Skip to content

How to get values for number of true positives, false positives and false negatives for object detection evaluation in pascal.ipynb notebook #590

@Monk5088

Description

@Monk5088

Hey Author,
Is there a way on how we can print the number of total positive detections,FPs, FNs in the Object detection pascal.ipynb notebook.
Here is the code the you have used for calculation of AP for object detection evaluation:

def compute_class_AP(model, dl, n_classes, iou_thresh=0.5, detect_thresh=0.35, num_keep=100):
    tps, clas, p_scores = [], [], []
    classes, n_gts = LongTensor(range(n_classes)),torch.zeros(n_classes).long()
    with torch.no_grad():
        for input,target in progress_bar(dl):
            output = model(input)
            for i in range(target[0].size(0)):
                bbox_pred, preds, scores = get_predictions(output, i, detect_thresh)
                tgt_bbox, tgt_clas = unpad(target[0][i], target[1][i])
                if len(bbox_pred) != 0 and len(tgt_bbox) != 0:
                    ious = IoU_values(bbox_pred, tgt_bbox)
                    max_iou, matches = ious.max(1)
                    detected = []
                    for i in range_of(preds):
                        if max_iou[i] >= iou_thresh and matches[i] not in detected and tgt_clas[matches[i]] == preds[i]:
                            detected.append(matches[i])
                            tps.append(1)
                        else: tps.append(0)
                    clas.append(preds.cpu())
                    p_scores.append(scores.cpu())
                n_gts += (tgt_clas.cpu()[:,None] == classes[None,:]).sum(0)
    tps, p_scores, clas = torch.tensor(tps), torch.cat(p_scores,0), torch.cat(clas,0)
    fps = 1-tps
    idx = p_scores.argsort(descending=True)
    tps, fps, clas = tps[idx], fps[idx], clas[idx]
    aps = []
    #return tps, clas
    for cls in range(n_classes):
        tps_cls, fps_cls = tps[clas==cls].float().cumsum(0), fps[clas==cls].float().cumsum(0)
        if tps_cls.numel() != 0 and tps_cls[-1] != 0:
            precision = tps_cls / (tps_cls + fps_cls + 1e-8)
            recall = tps_cls / (n_gts[cls] + 1e-8)
            aps.append(compute_ap(precision, recall))
        else: aps.append(0.)
    return aps

From this code how can we get the total positive , false detection by the model.
Thanks and regards,
Harshit

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions