|
| 1 | +# Copyright (c) 2025 Advanced Micro Devices, Inc. |
| 2 | +# All rights reserved. |
| 3 | +# |
| 4 | +# Redistribution and use in source and binary forms, with or without |
| 5 | +# modification, are permitted provided that the following conditions are met: |
| 6 | +# |
| 7 | +# * Redistributions of source code must retain the above copyright notice, this |
| 8 | +# list of conditions and the following disclaimer. |
| 9 | +# |
| 10 | +# * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | +# this list of conditions and the following disclaimer in the documentation |
| 12 | +# and/or other materials provided with the distribution. |
| 13 | +# |
| 14 | +# * Neither the name of qonnx nor the names of its |
| 15 | +# contributors may be used to endorse or promote products derived from |
| 16 | +# this software without specific prior written permission. |
| 17 | +# |
| 18 | +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 19 | +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 20 | +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 21 | +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
| 22 | +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 23 | +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| 24 | +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
| 25 | +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
| 26 | +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 27 | +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 28 | + |
| 29 | + |
| 30 | +import pytest |
| 31 | + |
| 32 | +import numpy as np |
| 33 | +import onnx.helper as oh |
| 34 | +from onnx import TensorProto |
| 35 | + |
| 36 | +import qonnx.core.onnx_exec as oxe |
| 37 | +from qonnx.core.datatype import DataType |
| 38 | +from qonnx.core.modelwrapper import ModelWrapper |
| 39 | +from qonnx.transformation.extract_conv_bias import ExtractBiasFromConv |
| 40 | +from qonnx.transformation.infer_shapes import InferShapes |
| 41 | +from qonnx.util.basic import gen_finn_dt_tensor, qonnx_make_model |
| 42 | + |
| 43 | + |
| 44 | +# Helper function to generate valid parameter combinations, with an option to include 'dw' |
| 45 | +def generate_params(include_dw=True): |
| 46 | + params = [] |
| 47 | + biases = ["float", None, "int_quant", "bp_quant"] |
| 48 | + scales = ["per_tensor", "per_channel"] |
| 49 | + zero_points = ["per_tensor", "per_channel"] |
| 50 | + |
| 51 | + dw_options = [True, False] if include_dw else [None] |
| 52 | + |
| 53 | + for dw in dw_options: |
| 54 | + for bias in biases: |
| 55 | + if bias in ["float", None]: |
| 56 | + # Ignore scale and zero_point for this bias |
| 57 | + params.append((dw, bias, None, None) if include_dw else (bias, None, None)) |
| 58 | + else: |
| 59 | + # Include all combinations of scale and zero_point for other biases |
| 60 | + for scale in scales: |
| 61 | + for zero_point in zero_points: |
| 62 | + if include_dw: |
| 63 | + params.append((dw, bias, scale, zero_point)) |
| 64 | + else: |
| 65 | + params.append((bias, scale, zero_point)) |
| 66 | + return params |
| 67 | + |
| 68 | + |
| 69 | +@pytest.mark.parametrize("dw, bias, scale, zero_point", generate_params(include_dw=True)) |
| 70 | +def test_extract_conv_bias(dw, bias, scale, zero_point): |
| 71 | + ishape = (1, 32, 111, 111) |
| 72 | + if dw is True: |
| 73 | + group = ishape[1] |
| 74 | + out_channels = ishape[1] |
| 75 | + kernel_size = 3 |
| 76 | + padding = 1 |
| 77 | + stride = 1 |
| 78 | + w_shape = (32, 1, 3, 3) |
| 79 | + |
| 80 | + else: |
| 81 | + group = 1 |
| 82 | + out_channels = 64 |
| 83 | + kernel_size = 1 |
| 84 | + padding = 0 |
| 85 | + stride = 1 |
| 86 | + w_shape = (64, 32, 1, 1) |
| 87 | + |
| 88 | + wdt = idt = odt = DataType["FLOAT32"] |
| 89 | + |
| 90 | + # set up onnx model |
| 91 | + inp = oh.make_tensor_value_info("inp", TensorProto.FLOAT, ishape) |
| 92 | + outp = oh.make_tensor_value_info("outp", TensorProto.FLOAT, [ishape[0], out_channels, ishape[2], ishape[3]]) |
| 93 | + |
| 94 | + W = oh.make_tensor_value_info("W", TensorProto.FLOAT, w_shape) |
| 95 | + |
| 96 | + if bias is not None: |
| 97 | + bias_shape = (out_channels,) |
| 98 | + if scale is not None and "per_channel" in scale: |
| 99 | + scale_shape = (out_channels,) |
| 100 | + elif scale is not None and "per_tensor" in scale: |
| 101 | + scale_shape = (1,) |
| 102 | + if scale is not None and "per_channel" in zero_point: |
| 103 | + zpt_shape = (out_channels,) |
| 104 | + elif scale is not None and "per_tensor" in zero_point: |
| 105 | + zpt_shape = (1,) |
| 106 | + B = oh.make_tensor_value_info("B", TensorProto.FLOAT, bias_shape) |
| 107 | + |
| 108 | + cnv_node = oh.make_node( |
| 109 | + "Conv", |
| 110 | + inputs=["inp", "W"] if not bias else ["inp", "W", "B"], |
| 111 | + outputs=["outp"], |
| 112 | + kernel_shape=[kernel_size, kernel_size], |
| 113 | + pads=[padding, padding, padding, padding], |
| 114 | + strides=[stride, stride], |
| 115 | + group=group, |
| 116 | + ) |
| 117 | + nodes = [cnv_node] |
| 118 | + value_info = [W] if not bias else [W, B] |
| 119 | + # if the bias isn't quantized, we can directly wire up the Conv layer |
| 120 | + # otherwise an additional Quant node needs to be inserted |
| 121 | + if bias not in ["float", None]: |
| 122 | + if "bp" in bias: |
| 123 | + optype = "BipolarQuant" |
| 124 | + elif "int" in bias: |
| 125 | + optype = "IntQuant" |
| 126 | + # inputs to Quant node |
| 127 | + param0 = oh.make_tensor_value_info("param0", TensorProto.FLOAT, bias_shape) |
| 128 | + param1 = oh.make_tensor_value_info("param1", TensorProto.FLOAT, scale_shape) |
| 129 | + param2 = oh.make_tensor_value_info("param2", TensorProto.FLOAT, zpt_shape) |
| 130 | + value_info.append(param0) |
| 131 | + value_info.append(param1) |
| 132 | + value_info.append(param2) |
| 133 | + if "int" in bias: |
| 134 | + param3 = oh.make_tensor_value_info("param3", TensorProto.FLOAT, [1]) |
| 135 | + value_info.append(param3) |
| 136 | + quant_node = oh.make_node( |
| 137 | + optype, |
| 138 | + domain="qonnx.custom_op.general", |
| 139 | + inputs=["param0", "param1", "param2", "param3"] if "int" in bias else ["param0", "param1", "param2"], |
| 140 | + outputs=["B"], |
| 141 | + narrow=0, |
| 142 | + rounding_mode="ROUND", |
| 143 | + signed=1, |
| 144 | + ) |
| 145 | + nodes.append(quant_node) |
| 146 | + graph = oh.make_graph( |
| 147 | + nodes=nodes, |
| 148 | + name="cnv_graph", |
| 149 | + inputs=[inp], |
| 150 | + outputs=[outp], |
| 151 | + value_info=value_info, |
| 152 | + ) |
| 153 | + |
| 154 | + model = qonnx_make_model(graph, producer_name="test-cnv-model") |
| 155 | + model = ModelWrapper(model) |
| 156 | + model.set_tensor_datatype("inp", idt) |
| 157 | + model.set_tensor_datatype("outp", odt) |
| 158 | + model.set_tensor_datatype("W", wdt) |
| 159 | + |
| 160 | + w_tensor = gen_finn_dt_tensor(wdt, w_shape) |
| 161 | + |
| 162 | + if bias is not None: |
| 163 | + b_tensor = gen_finn_dt_tensor(DataType["FLOAT32"], bias_shape) |
| 164 | + # set B tensor directly or set first input of quant node |
| 165 | + if bias != "float": |
| 166 | + model.set_initializer("param0", b_tensor) |
| 167 | + scale = gen_finn_dt_tensor(DataType["FLOAT32"], scale_shape) |
| 168 | + model.set_initializer("param1", scale) |
| 169 | + zpt = gen_finn_dt_tensor(DataType["FLOAT32"], zpt_shape) |
| 170 | + model.set_initializer("param2", zpt) |
| 171 | + if "int" in bias: |
| 172 | + model.set_initializer("param3", 8 * np.ones(1)) |
| 173 | + else: |
| 174 | + model.set_initializer("B", b_tensor) |
| 175 | + |
| 176 | + model.set_initializer("W", w_tensor) |
| 177 | + model = model.transform(InferShapes()) |
| 178 | + |
| 179 | + input_tensor = gen_finn_dt_tensor(idt, ishape) |
| 180 | + output_dict = oxe.execute_onnx(model, {model.graph.input[0].name: input_tensor}) |
| 181 | + expected = output_dict[model.graph.output[0].name] |
| 182 | + |
| 183 | + model = model.transform(ExtractBiasFromConv()) |
| 184 | + |
| 185 | + if bias is not None: |
| 186 | + assert len(model.get_nodes_by_op_type("Add")) > 0, "Bias wasn't extracted into add node" |
| 187 | + |
| 188 | + output_dict = oxe.execute_onnx(model, {model.graph.input[0].name: input_tensor}) |
| 189 | + produced = output_dict[model.graph.output[0].name] |
| 190 | + |
| 191 | + # check if is close (fp calculation) |
| 192 | + assert np.isclose(produced, expected, atol=1e-3).all() |
| 193 | + |
| 194 | + |
| 195 | +@pytest.mark.parametrize("bias, scale, zero_point", generate_params(include_dw=False)) |
| 196 | +def test_extract_conv_transpose_bias(bias, scale, zero_point): |
| 197 | + ishape = (1, 32, 111, 111) |
| 198 | + group = 1 |
| 199 | + out_channels = 64 |
| 200 | + kernel_size = 1 |
| 201 | + padding = 0 |
| 202 | + stride = 1 |
| 203 | + w_shape = (32, 64, 1, 1) |
| 204 | + |
| 205 | + wdt = idt = odt = DataType["FLOAT32"] |
| 206 | + |
| 207 | + # Set up ONNX model |
| 208 | + inp = oh.make_tensor_value_info("inp", TensorProto.FLOAT, ishape) |
| 209 | + outp_shape = (ishape[0], out_channels, ishape[2], ishape[3]) |
| 210 | + outp = oh.make_tensor_value_info("outp", TensorProto.FLOAT, outp_shape) |
| 211 | + |
| 212 | + W = oh.make_tensor_value_info("W", TensorProto.FLOAT, w_shape) |
| 213 | + |
| 214 | + if bias is not None: |
| 215 | + bias_shape = (out_channels,) |
| 216 | + if scale is not None and "per_channel" in scale: |
| 217 | + scale_shape = (out_channels,) |
| 218 | + elif scale is not None and "per_tensor" in scale: |
| 219 | + scale_shape = (1,) |
| 220 | + if scale is not None and "per_channel" in zero_point: |
| 221 | + zpt_shape = (out_channels,) |
| 222 | + elif scale is not None and "per_tensor" in zero_point: |
| 223 | + zpt_shape = (1,) |
| 224 | + |
| 225 | + B = oh.make_tensor_value_info("B", TensorProto.FLOAT, bias_shape) |
| 226 | + |
| 227 | + cnv_node = oh.make_node( |
| 228 | + "ConvTranspose", |
| 229 | + inputs=["inp", "W"] if not bias else ["inp", "W", "B"], |
| 230 | + outputs=["outp"], |
| 231 | + kernel_shape=[kernel_size, kernel_size], |
| 232 | + pads=[padding, padding, padding, padding], |
| 233 | + strides=[stride, stride], |
| 234 | + group=group, |
| 235 | + ) |
| 236 | + nodes = [cnv_node] |
| 237 | + value_info = [W] if not bias else [W, B] |
| 238 | + |
| 239 | + # If the bias isn't quantized, we can directly wire up the ConvTranspose layer |
| 240 | + # Otherwise, an additional Quant node needs to be inserted |
| 241 | + if bias not in ["float", None]: |
| 242 | + if "bp" in bias: |
| 243 | + optype = "BipolarQuant" |
| 244 | + elif "int" in bias: |
| 245 | + optype = "IntQuant" |
| 246 | + # Inputs to Quant node |
| 247 | + param0 = oh.make_tensor_value_info("param0", TensorProto.FLOAT, bias_shape) |
| 248 | + param1 = oh.make_tensor_value_info("param1", TensorProto.FLOAT, scale_shape) |
| 249 | + param2 = oh.make_tensor_value_info("param2", TensorProto.FLOAT, zpt_shape) |
| 250 | + value_info.append(param0) |
| 251 | + value_info.append(param1) |
| 252 | + value_info.append(param2) |
| 253 | + if "int" in bias: |
| 254 | + param3 = oh.make_tensor_value_info("param3", TensorProto.FLOAT, [1]) |
| 255 | + value_info.append(param3) |
| 256 | + quant_node = oh.make_node( |
| 257 | + optype, |
| 258 | + domain="qonnx.custom_op.general", |
| 259 | + inputs=["param0", "param1", "param2", "param3"] if "int" in bias else ["param0", "param1", "param2"], |
| 260 | + outputs=["B"], |
| 261 | + narrow=0, |
| 262 | + rounding_mode="ROUND", |
| 263 | + signed=1, |
| 264 | + ) |
| 265 | + nodes.append(quant_node) |
| 266 | + |
| 267 | + graph = oh.make_graph( |
| 268 | + nodes=nodes, |
| 269 | + name="cnv_transpose_graph", |
| 270 | + inputs=[inp], |
| 271 | + outputs=[outp], |
| 272 | + value_info=value_info, |
| 273 | + ) |
| 274 | + |
| 275 | + model = qonnx_make_model(graph, producer_name="test-cnv-transpose-model") |
| 276 | + model = ModelWrapper(model) |
| 277 | + model.set_tensor_datatype("inp", idt) |
| 278 | + model.set_tensor_datatype("outp", odt) |
| 279 | + model.set_tensor_datatype("W", wdt) |
| 280 | + |
| 281 | + w_tensor = gen_finn_dt_tensor(wdt, w_shape) |
| 282 | + |
| 283 | + if bias is not None: |
| 284 | + b_tensor = gen_finn_dt_tensor(DataType["FLOAT32"], bias_shape) |
| 285 | + # Set B tensor directly or set first input of quant node |
| 286 | + if bias != "float": |
| 287 | + model.set_initializer("param0", b_tensor) |
| 288 | + scale = gen_finn_dt_tensor(DataType["FLOAT32"], scale_shape) |
| 289 | + model.set_initializer("param1", scale) |
| 290 | + zpt = gen_finn_dt_tensor(DataType["FLOAT32"], zpt_shape) |
| 291 | + model.set_initializer("param2", zpt) |
| 292 | + if "int" in bias: |
| 293 | + model.set_initializer("param3", 8 * np.ones(1)) |
| 294 | + else: |
| 295 | + model.set_initializer("B", b_tensor) |
| 296 | + |
| 297 | + model.set_initializer("W", w_tensor) |
| 298 | + model = model.transform(InferShapes()) |
| 299 | + |
| 300 | + input_tensor = gen_finn_dt_tensor(idt, ishape) |
| 301 | + output_dict = oxe.execute_onnx(model, {model.graph.input[0].name: input_tensor}) |
| 302 | + expected = output_dict[model.graph.output[0].name] |
| 303 | + |
| 304 | + model = model.transform(ExtractBiasFromConv()) |
| 305 | + |
| 306 | + if bias is not None: |
| 307 | + assert len(model.get_nodes_by_op_type("Add")) > 0, "Bias wasn't extracted into add node" |
| 308 | + |
| 309 | + output_dict = oxe.execute_onnx(model, {model.graph.input[0].name: input_tensor}) |
| 310 | + produced = output_dict[model.graph.output[0].name] |
| 311 | + |
| 312 | + # Check if is close (fp calculation) |
| 313 | + assert np.isclose(produced, expected, atol=1e-3).all() |
0 commit comments