-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathsiamese_nets_training.py
132 lines (121 loc) · 4.47 KB
/
siamese_nets_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# flake8: noqa: E265
import shutil
from datetime import datetime
from pathlib import Path
import imgaug.augmenters as iaa
import numpy as np
import pandas as pd
import tensorflow as tf
import yaml
from tensorflow.keras.models import load_model
from tensorflow.keras import applications as keras_applications
from tensorflow.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, TensorBoard
from tensorflow.keras.optimizers import Adam
from keras_fsl.models import SiameseNets
from keras_fsl.sequences import training
#%% Init data
output_folder = Path("logs") / "random_balanced_sequence" / datetime.today().strftime("%Y%m%d-%H%M%S")
output_folder.mkdir(parents=True, exist_ok=True)
try:
shutil.copy(__file__, output_folder / "training_pipeline.py")
except (FileNotFoundError, NameError):
pass
all_annotations = pd.read_csv("data/annotations/cropped_images.csv").assign(
day=lambda df: df.image_name.str.slice(3, 11), image_name=lambda df: "data/images/cropped_images/" + df.image_name,
)
train_val_test_split = yaml.safe_load(open("data/annotations/cropped_images_split.yaml"))
train_set = all_annotations.loc[lambda df: df.day.isin(train_val_test_split["train_set_dates"])]
val_set = all_annotations.loc[lambda df: df.day.isin(train_val_test_split["val_set_dates"])]
test_set = all_annotations.loc[lambda df: df.day.isin(train_val_test_split["test_set_dates"])].reset_index(drop=True)
#%% Init model
preprocessing = iaa.Sequential(
[
iaa.Fliplr(0.5),
iaa.Flipud(0.5),
iaa.Affine(rotate=(-180, 180)),
iaa.CropToFixedSize(224, 224, position="center"),
iaa.PadToFixedSize(224, 224, position="center"),
iaa.AssertShape((None, 224, 224, 3)),
iaa.Lambda(
lambda images_list, *_: keras_applications.resnet50.preprocess_input(
np.stack(images_list), data_format="channels_last"
)
),
]
)
siamese_nets = SiameseNets(
branch_model={"name": "ResNet50", "init": {"include_top": False, "input_shape": (224, 224, 3), "pooling": "avg"}},
head_model={
"name": "MixedNorms",
"init": {
"norms": [
lambda x: 1 - tf.nn.l2_normalize(x[0]) * tf.nn.l2_normalize(x[1]),
lambda x: tf.math.abs(x[0] - x[1]),
lambda x: tf.nn.softmax(tf.math.abs(x[0] - x[1])),
lambda x: tf.square(x[0] - x[1]),
]
},
},
)
branch_depth = len(siamese_nets.get_layer("branch_model").layers)
#%% Train model with Sequences
callbacks = [
TensorBoard(output_folder),
ModelCheckpoint(str(output_folder / "best_model.h5"), save_best_only=True,),
ReduceLROnPlateau(),
]
train_sequence = training.pairs.RandomBalancedPairsSequence(train_set, preprocessings=preprocessing, batch_size=16)
val_sequence = training.pairs.RandomBalancedPairsSequence(val_set, preprocessings=preprocessing, batch_size=16)
siamese_nets.get_layer("branch_model").trainable = False
optimizer = Adam(lr=1e-4)
siamese_nets.compile(optimizer=optimizer, loss="binary_crossentropy")
siamese_nets.fit_generator(
train_sequence,
validation_data=val_sequence,
callbacks=callbacks,
initial_epoch=0,
epochs=3,
use_multiprocessing=True,
workers=2,
)
siamese_nets.get_layer("branch_model").trainable = True
for layer in siamese_nets.get_layer("branch_model").layers[: int(branch_depth * 0.8)]:
layer.trainable = False
optimizer = Adam(1e-5)
siamese_nets.compile(optimizer=optimizer, loss="binary_crossentropy")
siamese_nets.fit_generator(
train_sequence,
validation_data=val_sequence,
callbacks=callbacks,
initial_epoch=3,
epochs=10,
use_multiprocessing=True,
workers=2,
)
siamese_nets = load_model(output_folder / "best_model.h5")
for layer in siamese_nets.get_layer("branch_model").layers[int(branch_depth * 0.5) :]:
layer.trainable = True
optimizer = Adam(1e-5)
siamese_nets.compile(optimizer=optimizer, loss="binary_crossentropy")
siamese_nets.fit_generator(
train_sequence,
validation_data=val_sequence,
callbacks=callbacks,
initial_epoch=10,
epochs=15,
use_multiprocessing=True,
workers=2,
)
siamese_nets = load_model(output_folder / "best_model.h5")
optimizer = Adam(1e-6)
siamese_nets.compile(optimizer=optimizer, loss="binary_crossentropy")
siamese_nets.fit_generator(
train_sequence,
validation_data=val_sequence,
callbacks=callbacks,
initial_epoch=15,
epochs=20,
use_multiprocessing=True,
workers=2,
)
siamese_nets.save_model(str(output_folder / "final_model.h5"))