-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqueries.tex
286 lines (243 loc) · 13.2 KB
/
queries.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
%!TEX root = reference.tex
\chapter{Queries}
\label{queries}
\index{queries}
A \ntRef{Query} is an expression that denotes a value implicitly -- by operations and constraints on other identified values. Typically, the result of a query is an \q{list} but it may be of any \ntRef{Type} -- provided that it implements the \q{sequence} contract.
There are several `flavors' of query: the \q{all} query (shown in Figure~\vref{allSolutionsFig}) projects a subset over one or more base collections; the \emph{N} \q{of} query extracts a list containing at most \emph{N} tuples from a collection; and the \q{any} query extracts a tuple that satisfies the query.
The results of a query may be sorted and may be filtered for uniqueness.
\begin{figure}[htbp]
\begin{eqnarray*}
\emph{Expression}&\arrowplus&\ntRef{Query}\\
\ntDef{Query}&\arrow&\ntRef{SequenceQuery}\ \choice\ \ntRef{ReductionQuery}\ \choice\ \ntRef{SatisfactionQuery}
\end{eqnarray*}
\caption{Query Expression}\label{relationQueryFig}
\end{figure}
\section{Sequence Queries}
\label{sequenceQueries}
A \ntRef{SequenceQuery} returns a collection of answers -- either all of them or some subset of them.
\begin{figure}[htbp]
\begin{eqnarray*}
\ntDef{SequenceQuery}&\arrow&\ntRef{SequenceType}\ \q{of}\ \q{\{}\ntRef{QueryExpression}\ \q{\}}\\
\ntDef{QueryExpression}&\arrow&\ntRef{AllSolutionsQuery}\\
&\choice&\ntRef{BoundedCardinalityQuery}
\end{eqnarray*}
\caption{Sequence Query Expression}\label{sequenceQueryFig}
\end{figure}
\noindent
where the \ntRef{SequenceType} plays a similar role in identifying the type of the result to that in \ntRef{SequenceExpression}s. If the \ntRef{SequenceType} is the keyword \q{sequence} then the result type is determined by the context of the \ntRef{Query} expression. Otherwise, \ntRef{SequenceType} identifies the name of a \ntRef{Type} -- which must implement the \q{sequence} contract (see Program~\vref{sequenceContractDef}) -- that denotes the result type of the query.
There are two variants of the \ntRef{SequenceQuery} -- \ntRef{AllSolutionsQuery} which returns a collection of all the answers to a question and \ntRef{BoundedCardinalityQuery} which returns some bounded subset of the query answers.
\subsection{All Solutions Queries}
\label{allSolutions}
\index{query!all solutions}
The all solutions query expressions return results corresponding to all the different ways that a condition may be satisfied. There are variants corresponding to finding distinct solutions and having the result sets ordered.
\begin{figure}[htbp]
\begin{eqnarray*}
\ntDef{AllSolutionsQuery}&\arrow&[\,\q{all}\,|\,\q{unique}\,]\ \ntRef{Expression}\ \q{where}\ \ntRef{Condition}\ [\ntRef{Modifier}]\\
\ntDef{Modifier}&\arrow&\q{order}\ [\q{descending}]\ \q{by}\ \ntRef{Expression}\ [\q{using}\ \ntRef{Expression}]
\end{eqnarray*}
\caption{All Solutions Query}\label{allSolutionsFig}
\end{figure}
For example, given a \q{list} bound to the variable \q{Tble}:
\begin{lstlisting}
def Tble is list of [
("john",23),
("sam",19),
("peter",21)
]
\end{lstlisting}
the query
\begin{lstlisting}
list of { all Who where (Who,A) in Tble and A>20 }
\end{lstlisting}
is a \ntRef{SequenceQuery} over the \q{Tble} list defined above. Its value is the \q{list}:
\begin{lstlisting}
list of [
"john",
"peter"
]
\end{lstlisting}
\q{"john"} and \q{"peter"} are in the result because both \q{("john",23)} and \q{("peter",21)} are in \q{Tble} and satisfy the condition that \q{A} is greater than 20.
\index{queries!bound expression}
In principle, any expression may follow the \q{all} clause in a query. The `bound expression' may mention variables that are `bound' within the query constraint.
\subsubsection{Ordered Result Sets}
The \q{order by} modifier is associated with a \emph{path expression} -- like the bound expression it is evaluated in the context of a successful solution to the condition. The results of an \q{order}ed query expression are sorted according to the values of this path expression. The type of this expression must be one that admits to being compared -- i.e., the type must implement the \q{comparable} contract.
For example, to return an ordered \q{cons} list\footnote{The type of the resulting collection is depends on whether the \ntRef{Query} is governed by an enclosing \ntRef{SequenceType} if available, or of type \q{array} by default.} of people over the age of 20 we can use the query expression:
\begin{lstlisting}
cons of { all Who where (Who,A) in Tble and A>20
order by A}
\end{lstlisting}
which would give the result:
\begin{lstlisting}
cons of [
"peter",
"john"
]
\end{lstlisting}
The \q{using} modifier may be used in conjunction with the \q{order by} modifier to override the default concept of less than. If given, the \q{using} keyword should be followed by a \q{boolean}-valued function defined over the same type as the \q{order by} expression.
For example, to override the use of \q{<} in the \q{order by} query above, with say \q{>}, we can use:
\begin{lstlisting}
cons of { all Who where (Who,A) in Tble and A>20
order by A using (>)}
\end{lstlisting}
which would give the result
\begin{lstlisting}
cons of [
"john",
"peter"
]
\end{lstlisting}
\subsubsection{Duplicate Elimination}
\label{duplicateElim}
\index{eliminating duplicates in queries}
\index{query!eliminating duplicates}
\index{unique@\q{unique} queries}
The \q{unique} keyword is used, instead of the \q{all} keyword, to signal a query where duplicate elements are eliminated from the answer set.
For example, the query:
\begin{lstlisting}
list of { unique Sib where (P,Who) in parent and
(P,Sib) in parent and Who!=Sib }
\end{lstlisting}
would have the effect of eliminating duplication caused by the fact that most people have two recorded parents.
The \q{unique} query requires that the type of the `bound expression' implements the \q{comparable} contract -- i.e., that \q{<} is defined for the type.
\begin{aside}
The \q{unique} query is potentially more expensive than the \q{all} query -- since it involves post-processing the results as the \q{all} query to perform the duplicate elimination.
\end{aside}
%\subsubsection{Type Safety}
%By default, the type of an \q{all} query is an \q{array} type; it requires that the condition be type safe:
%\begin{prooftree}
%\AxiomC{\typeprd{E}{B}{T}}
%\AxiomC{\typesat{E}{C}}
%\BinaryInfC{\typeprd{E}{\q{all}\ B\ \q{where}\ C}{\q{list of }T}}
%\end{prooftree}
%
%The type safety rule for \q{unique} queries very similar, except that the bound element must be of a type that implements the \q{comparable} contract:
%\begin{prooftree}
%\AxiomC{\typeprd{E}{B}{T\ \q{where comparable over }T}}
%\AxiomC{\typesat{E}{C}}
%\BinaryInfC{\typeprd{E}{\q{unique}\ B\ \q{where}\ C}{\q{list of }T}}
%\end{prooftree}
%
%\index{query!sorted}
%\index{sorted queries}
%\index{creating a sorted list from a query}
%In the case of an \q{ordered} query, the path expression must implement \q{comparable} and the result is a \q{list}:
%\begin{prooftree}
%\AxiomC{\typeprd{E}{B}{T}}
%\AxiomC{\typesat{E}{C}}
%\AxiomC{\typeprd{E}{P}{P\sub{T}\ \q{where comparable over }P\sub{T}}}
%\TrinaryInfC{\typeprd{E}{\q{all}\ B\ \q{where}\ C\ \q{order by}\ P}{\q{list of }T}}
%\end{prooftree}
%
\subsection{Bounded Cardinality Queries}
The \emph{N} \q{of} quantifier delivers \emph{at most} N solutions to the query. For example, the query:
\begin{lstlisting}
list of { 5 of X where (P,X) in children }
\end{lstlisting}
returns an \q{list} of the first 5 children of \q{P}.
\begin{figure}[htbp]
\begin{eqnarray*}
\ntDef{BoundedCardinalityQuery}&\arrow&\ntRef{QueryQuantifier}\ \q{where}\ \ntRef{Condition}\ [\ntRef{Modifier}]\\
\ntDef{QueryQuantifier}&\arrow&[\,\q{unique}\,]\ \ntRef{Expression}\ \q{of}\ \ntRef{Expression}
\end{eqnarray*}
\caption{Bounded Cardinality Query}\label{boundedCardinalityFig}
\end{figure}
\subsubsection{Duplicate Elimination}
If the \q{unique} keyword is used with the bounded cardinality then duplication elimination is performed \emph{before} counting the results. I.e., a query of the form:
\begin{lstlisting}
list of { unique 5 of X where (P,X) in children }
\end{lstlisting}
is guaranteed to find 5 unique answers -- assuming that there are at least 5 unique ways of solving the \q{(P,X) in children} condition.
\subsubsection{Ordered Result Sets}
If the \q{ordered by} modifier is \emph{not} present, there is no defined ordering for the answers in the result. In particular, if \emph{N} answers are requested, they could be any \emph{N} answers that satisfy the condition.
If an \q{order by} clause is specified then the result consists of the `smallest' results. I.e., if there are 5 answers to the query:
\begin{lstlisting}
list of { all X where (P,X) in children }
\end{lstlisting}
then the query
\begin{lstlisting}
list of { 3 of X where (P,X) in children order by X }
\end{lstlisting}
results in an \q{array} of 3 elements that are guaranteed to be smaller or equal to any remaining answers.
If the \q{order descending} modifier is used then the `largest' results will be the ones returned.
\begin{aside}
Of course, in order to compute this smallest set, all the answers must first be computed. The result set sorted and only then the first elements picked.
\end{aside}
%\subsubsection{Type Safety}
%The type of a bounded query is a \q{list} type; it requires that the condition be type safe, and that the bound is an \q{integer}:
%\begin{prooftree}
%\AxiomC{\typeprd{E}{N}{\q{integer}}}
%\AxiomC{\typeprd{E}{B}{T}}
%\AxiomC{\typesat{E}{C}}
%\TrinaryInfC{\typeprd{E}{N\ \q{of}\ B\ \q{where}\ C}{\q{list of }T}}
%\end{prooftree}
%
%In the case of an \q{ordered} bounded query, the path expression must implement \q{comparable} and the result is a \q{list}:
%\begin{prooftree}
%\AxiomC{\typeprd{E}{N}{\q{integer}}\quad\typeprd{E}{B}{T}}
%\AxiomC{\typesat{E}{C}}
%\AxiomC{\typeprd{E}{P}{P\sub{T}\,\q{where comparable over }P\sub{T}}}
%\TrinaryInfC{\typeprd{E}{N\ \q{of}\ B\ \q{where}\ C\ \q{order by}\ P}{\q{list of }T}}
%\end{prooftree}
\section{Satisfaction Queries}
A \ntRef{Satisfaction} is used to find an individual that satisfies the condition. It returns a \emph{single} result corresponding to a solution of the query -- as an \q{option}al value.
\begin{figure}[htbp]
\begin{eqnarray*}
\ntDef{SatisfactionQuery}&\arrow&\q{any of}\ \ntRef{Expression}\ \q{where}\ \ntRef{Condition}\ [\ntRef{Modifier}]
\end{eqnarray*}
\caption{Satisfaction Query}\label{satisfactionQueryFig}
\end{figure}
For example, to find a child of \q{P} one could use the expression:
\begin{lstlisting}
any of X where (P,X) in children
\end{lstlisting}
The \q{default} clause is used in the case that the \ntRef{Condition} is \emph{not} satisfiable. For example, assuming that we did not have a record of \q{"fred"}'s parents, then the query
\begin{lstlisting}
any of P where (P,"fred") in children default "not known"
\end{lstlisting}
would result in the answer \q{"not known"}.
\subsubsection{A Sorted Satisfaction Query}
The \q{order by} clause can be used to select the `smallest' solution to the query: the result of an \q{any of} query that is governed by an \q{order by} clause is effectively the \emph{least} solution to the query. If the \q{order descending} modifier is used then the result is the largest solution to the query.
For example, to find the youngest child of \q{"john"} we can use the query:
\begin{lstlisting}
any of X where ("john",X) in children and (X,A) in ages order by A
\end{lstlisting}
\subsubsection{Type Safety}
A satisfaction query's type is \q{option} of the type of the bound expression. As with other queries, it requires that the condition is safe:
\begin{prooftree}
\AxiomC{\typeprd{E$\,\cup{}\,$varsIn(C)}{B}{T}}
\AxiomC{\typesat{E}{C}}
\BinaryInfC{\typeprd{E}{\q{any of}\ B\ \q{where}\ C}{\q{option of }T}}
\end{prooftree}
In the case of an \q{order}ed satisfaction query, the path expression must implement \q{comparable}:
\begin{prooftree}
\AxiomC{\typeprd{E$\,\cup{}\,$varsIn(C)}{B}{T}}
\AxiomC{\typesat{E}{C}}
\AxiomC{\typeprd{E}{P}{P\sub{T}\ \q{where comparable over }P\sub{T}}}
\TrinaryInfC{\typeprd{E}{\q{any of}\ B\ \q{where}\ C\ \q{order by}\ P}{\q{option of }T}}
\end{prooftree}
\section{Reduction Query}
\label{reductionQuery}
\index{accumulating over a query}
\index{applying a function to the results of a query}
A \ntRef{ReductionQuery} differs from other forms of query in that the results of satisfying the \ntRef{Condition} are `fed' to a function rather than being returned as some form of collection.
\begin{figure}[htbp]
\begin{eqnarray*}
\ntDef{ReductionQuery}&\arrow&\q{reduction}\ \ntRef{Expression}\ \q{of}\ \ntRef{QueryExpression}
\end{eqnarray*}
\caption{Reduction Query}\label{reductionQueryFig}
\end{figure}
The reduction function should have the type:
\begin{lstlisting}
(t\sub{E},t\sub{E})=>t\sub{E}
\end{lstlisting}
were \q{t\sub{E}} is the type of the bound expression in the \ntRef{QueryExpression}.
For example, to add up all the salaries in a department, one could use a query of the form:
\begin{lstlisting}
reduction (+) of { all E.salary where E in employees }
\end{lstlisting}
\begin{aside}
The reducing function is only applied if there is more than one solution to the query. In this sense, it is closer in semantics to \q{leftFold1} than to \q{leftFold} -- see Section~\vref{foldableContract}.
\end{aside}
\begin{aside}
The \ntRef{ReductionQuery} may be used with all the normal variants of \ntRef{QueryExpression}.
\end{aside}