@@ -45,24 +45,24 @@ patches yield a robust method.::
4545 "ksp_type": "cg",
4646 "pc_type": "mg",
4747 "mg_levels": {
48- "ksp_type": "chebyshev",
49- "ksp_max_it": 1,
50- **relax
48+ "ksp_type": "chebyshev",
49+ "ksp_max_it": 1,
50+ **relax
5151 },
5252 "mg_coarse": {
5353 "ksp_type": "preonly",
54- "pc_type": "cholesky"
54+ "pc_type": "cholesky"
5555 }
5656 }
5757
5858
5959 def asm_params(construct_dim):
6060 return {
61- "pc_type": "python",
62- "pc_python_type": "firedrake.ASMStarPC",
63- "pc_star_construct_dim": construct_dim,
64- "pc_star_backend_type": "tinyasm"
65- }
61+ "pc_type": "python",
62+ "pc_python_type": "firedrake.ASMStarPC",
63+ "pc_star_construct_dim": construct_dim,
64+ "pc_star_backend_type": "tinyasm"
65+ }
6666
6767Hiptmair proposed a finer space decomposition for Nedelec elements using edge
6868patches and vertex patches on the gradient of a Lagrange space. The python type
@@ -72,10 +72,10 @@ using the auxiliary Lagrange space in a multigrid hierarchy. ::
7272
7373 def hiptmair_params():
7474 return {
75- "pc_type": "python",
76- "pc_python_type": "firedrake.HiptmairPC",
77- "hiptmair_mg_levels": asm_params(1),
78- "hiptmair_mg_coarse": asm_params(0),
75+ "pc_type": "python",
76+ "pc_python_type": "firedrake.HiptmairPC",
77+ "hiptmair_mg_levels": asm_params(1),
78+ "hiptmair_mg_coarse": asm_params(0),
7979 }
8080
8181
@@ -84,8 +84,8 @@ over a range of meshes. We see that the auxiliary space approach gives lower
8484iteration counts than vertex patches, while being cheaper to invert.::
8585
8686 names = {
87- "Vertex Star": mg_params(asm_params(0)),
88- "Hiptmair": mg_params(hiptmair_params()),
87+ "Vertex Star": mg_params(asm_params(0)),
88+ "Hiptmair": mg_params(hiptmair_params()),
8989 }
9090
9191 for name, parameters in names.items():
0 commit comments