This verification test consists of two test cases. The second case, \ct{aerosol\_thermophoretic\_deposition\_2}, reverses the temperature gradient. The case consists of a box 1~cm on a side with adiabatic, free-slip side walls and a 100 K temperature gradient over the height of the box. The box is filled with two gas species each having a molecular weight of 28.8~g/mol, a viscosity of $2\times10^{-5}$~\si{kg/(m.s)}, a thermal conductivity of 0.025~\si{W/(m.K)}, and specific heat of 1~\si{kJ/(kg.K)}, and zero diffusivity. One of the gas species is defined as an aerosol with a diameter of 1~$\mu$m, a solid phase density of 2000~\si{kg/m^3}, and a solid phase conductivity of 1~\si{W/(m.K)}. The initial mass fraction of the aerosol is $1\times10^{-5}$. The gas temperature is initialized to its steady-state temperature gradient. \ct{STRATIFICATION}, \ct{NOISE}, and all aerosol behaviors except for \ct{THERMOPHORETIC\_SETTLING} and \ct{THERMOPHORETIC\_DEPOSITION} are turned off. Thermophoretic settling rates are weakly dependent on the gas density. Since there is a temperature gradient, the settling rates are not uniform over the height of the box. Unlike the gravitational settling case, this means over long enough time periods the overall settling rate is not linear in time; however, for a short time period a near linear settling rate is expected and can be determined analytically.
0 commit comments