Skip to content

Commit 3970b5b

Browse files
authored
Merge pull request #14217 from rmcdermo/master
FDS User Guide: document NEAR_WALL_PARTICLE_INTERPOLATION
2 parents 206c5ae + beab6fa commit 3970b5b

File tree

1 file changed

+7
-4
lines changed

1 file changed

+7
-4
lines changed

Manuals/FDS_User_Guide/FDS_User_Guide.tex

Lines changed: 7 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -6178,7 +6178,7 @@ \subsubsection{Thermally Thick Droplet Model}
61786178
\subsection{Drag}
61796179
\label{info:particle_drag}
61806180

6181-
The drag force exerted by moving or stationary particles is detailed in the FDS Technical Reference Guide, chapter ``Lagrangian Particles''~\cite{FDS_Math_Guide}. For solid particles, the default drag law is that of a solitary sphere. To invoke a different drag law, that of a solitary cylinder for example, set \ct{DRAG_LAW = 'CYLINDER'} on the \ct{PART} line. A summary of the available drag laws is given in table~\ref{tbl:draglaws}. If none of these options is applicable, you may specify a constant value of the drag coefficient for a particle class (a specific \ct{PART_ID}) by setting a \ct{DRAG_COEFFICIENT} on the \ct{PART} line. The \ct{DRAG_COEFFICIENT} over-rides the \ct{DRAG_LAW}.
6181+
The drag force exerted by moving or stationary particles is detailed in the FDS Technical Reference Guide, chapter ``Lagrangian Particles''~\cite{FDS_Math_Guide}. For solid particles, the default drag law is that of a solitary sphere. To invoke a different drag law, that of a solitary cylinder for example, set \ct{DRAG_LAW='CYLINDER'} on the \ct{PART} line. A summary of the available drag laws is given in table~\ref{tbl:draglaws}. If none of these options is applicable, you may specify a constant value of the drag coefficient for a particle class (a specific \ct{PART_ID}) by setting a \ct{DRAG_COEFFICIENT} on the \ct{PART} line. The \ct{DRAG_COEFFICIENT} over-rides the \ct{DRAG_LAW}.
61826182

61836183
\begin{table}[ht]
61846184
\begin{center}
@@ -6198,6 +6198,8 @@ \subsection{Drag}
61986198

61996199
If you are modeling a relatively dense collection of solid particles, like vegetation, you should set the \ct{DRAG_COEFFICIENT} explicitly and not rely on the correlations for spheres and cylinders which were developed for relatively independent bodies, not clusters.
62006200

6201+
\paragraph{Near Wall Particle Interpolation} The momentum exchange between a particle and the fluid depends on the local fluid velocity at the particle position. Normally, the velocity at the particle position is taken from a trilinear interpolation from the staggered velocity components nearest the particle. Thus, the particle lives in a different staggered cell for each component of velocity. When the particle position is within half a grid cell from the wall the default behavior is to use fluid velocity component tangential to the wall when computing the drag force in that component direction. This approximation is justified based on the plug flow profile seen in highly turbulent flows. However, as the flow becomes more resoled, this approximation may not be appropriate. If you specify \ct{NEAR_WALL_PARTICLE_INTERPOLTION=T} on \ct{MISC} then the fluid velocity will be linearly interpolated between the staggered component value and the no slip condition at the wall.
6202+
62016203

62026204
\subsection{Radiation Absorption and Emission}
62036205
\label{info:particle_radiation_absorption}
@@ -10084,7 +10086,7 @@ \section{SMOKE3D: Realistic Smoke and Fire}
1008410086
\end{lstlisting}
1008510087
The \ct{MASS_EXTINCTION_COEFFICIENT} is passed to Smokeview to be used for visualization.
1008610088

10087-
FDS outputs 3D smoke quantities as 8 bit integers compressed using run length encoding. Soot density, HRRPUV or temperatures are first scaled to 8 bit integers (soot density is converted to an opacity first). Repeated integers are replaced by $n$I where $n$ is the number of repeats and I is the value repeated.
10089+
FDS outputs 3D smoke quantities as 8 bit integers compressed using run length encoding. Soot density, HRRPUV or temperatures are first scaled to 8 bit integers (soot density is converted to an opacity first). Repeated integers are replaced by $n$I where $n$ is the number of repeats and I is the value repeated.
1008810090

1008910091
\newpage
1009010092

@@ -11748,7 +11750,7 @@ \chapter{Alphabetical List of Input Parameters}
1174811750
% ignorenamelistkw: /ISOF/DEBUG
1174911751
% ignorenamelistkw: /MISC/PERIODIC_TEST, /MISC/POSITIVE_ERROR_TEST, /MISC/PROFILING, /MISC/RADIATION
1175011752
% ignorenamelistkw: /MISC/STRATIFICATION, /MISC/SUPPRESSION, /MISC/UVW_FILE, /MISC/TENSOR_DIFFUSIVITY
11751-
% ignorenamelistkw: /MISC/CC_IBM, /MISC/CCVOL_LINK
11753+
% ignorenamelistkw: /MISC/CC_IBM, /MISC/CCVOL_LINK, /MISC/TEST_NEW_CHAR_MODEL, /MISC/FLUX_LIMITER_MW_CORRECTION
1175211754
% ignorenamelistkw: /PART/DEBUG
1175311755
% ignorenamelistkw: /REAC/C, /REAC/H, /REAC/O, /REAC/N, /REAC/FORMULA,
1175411756
% ignorenamelistkw: /SLCF/DEBUG, /SLCF/RLE_MIN, /SLCF/RLE_MAX, /SLCF/SLICETYPE
@@ -12621,7 +12623,8 @@ \section{\texorpdfstring{{\tt MISC}}{MISC} (Miscellaneous Parameters)}
1262112623
\ct{MAX_LEAK_PATHS} & Integer & Section~\ref{info:Leaks} & & 200 \\ \hline
1262212624
\ct{MAX_RAMPS} & Integer & Section~\ref{info:RAMP} & & 100 \\ \hline
1262312625
\ct{MINIMUM_ZONE_VOLUME} & Real & Section~\ref{info:filling_zones} & m$^3$ & 0 \\ \hline
12624-
\ct{MPI_TIMEOUT} & Real & Section~\ref{info:Errors} & s & 600. \\ \hline
12626+
\ct{MPI_TIMEOUT} & Real & Section~\ref{info:Errors} & s & 600. \\ \hline
12627+
\ct{NEAR_WALL_PARTICLE_INTERPOLATION} & Logical & Section~\ref{info:particle_drag} & & \ct{F} \\ \hline
1262512628
\ct{NEIGHBOR_SEPARATION_DISTANCE} & Real & Section~\ref{info:mesh_separation} & m & 0. \\ \hline
1262612629
\ct{NOISE} & Logical & Section~\ref{info:NOISE} & & \ct{T} \\ \hline
1262712630
\ct{NOISE_VELOCITY} & Real & Section~\ref{info:NOISE} & m/s & 0.005 \\ \hline

0 commit comments

Comments
 (0)