Skip to content

Commit 3c742df

Browse files
authored
Merge pull request #14306 from rmcdermo/master
FDS Verification Guide: general edits
2 parents c218e49 + b4455ee commit 3c742df

File tree

2 files changed

+55
-60
lines changed

2 files changed

+55
-60
lines changed

Manuals/FDS_Verification_Guide/FDS_Verification_Guide.tex

Lines changed: 47 additions & 52 deletions
Original file line numberDiff line numberDiff line change
@@ -3587,7 +3587,7 @@ \subsection{Finite Rate Reactions (\texorpdfstring{\ct{reactionrate\_arrhenius}}
35873587
\caption[Species evolution in a 0-order 1-step finite rate reaction]{Time evolution of species mass fraction for a one-step zero-order Arrhenius finite rate reaction. The left plot is using RK2-Richardson ODE solver and the right plot is using CVODE ODE solver.}
35883588
\label{fig:Arrhenius_0Order_1step}
35893589
\end{figure}
3590-
The second finite rate test case is a one-step, second-order propane reaction, Eq.~(\ref{eq:1step_propane}). The table below shows the reaction rate input parameters. In this case, $a_{\alpha}=[1,1,0,0]$ for propane, oxygen, carbon monoxide, and water vapor respectively. This makes the reaction second-order as $\mathcal{O}=\sum a_{\alpha}$. Species evolutions for the one-step second-order reaction are shown in Fig.~\ref{fig:Arrhenius_2Order_1step}.
3590+
The second finite rate test case is a one-step, second-order propane reaction, Eq.~(\ref{eq:1step_propane}). The table below shows the reaction rate input parameters. In this case, $a_{\alpha}=[1,1,0,0]$ for propane, oxygen, carbon monoxide, and water vapor respectively. This makes the reaction second-order as $\sum a_{\alpha}=2$. Species evolutions for the one-step second-order reaction are shown in Fig.~\ref{fig:Arrhenius_2Order_1step}.
35913591
\begin{table}[ht]
35923592
\begin{center}
35933593
\caption[Arrhenius values for a single step C$_3$H$_8$ reaction]{Arrhenius values for a single step C$_3$H$_8$ reaction; $\alpha$ = [$\mathrm{C_3H_8}$ $\mathrm{O_2}$ $\mathrm{CO_2}$ $\mathrm{H_2O}$].}
@@ -3600,12 +3600,11 @@ \subsection{Finite Rate Reactions (\texorpdfstring{\ct{reactionrate\_arrhenius}}
36003600
\end{table}
36013601
\begin{figure}[h!]
36023602
\centering
3603-
\setlength{\tabcolsep}{-10pt}
3604-
\begin{tabular*}{\textwidth}{lr}
3605-
\includegraphics[trim={20pt 0pt 20pt 0pt}, clip, height=1.8in]{SCRIPT_FIGURES/reactionrate_arrhenius_2order_1step}
3606-
\includegraphics[trim={20pt 0pt 20pt 0pt}, clip, height=1.8in]{SCRIPT_FIGURES/reactionrate_arrhenius_2order_1step_cvode}
3607-
\end{tabular*}
3608-
\caption[Species evolution in a 2-order 1-step finite rate reaction]{Time evolution of species mass fraction for a one-step second-order Arrhenius finite rate reaction. The left plot is using RK2-Richardson ODE solver and the right plot is using CVODE ODE solver.}
3603+
\begin{tabular}{c}
3604+
\includegraphics[height=2.2in]{SCRIPT_FIGURES/reactionrate_arrhenius_2order_1step} \\
3605+
\includegraphics[height=2.2in]{SCRIPT_FIGURES/reactionrate_arrhenius_2order_1step_cvode}
3606+
\end{tabular}
3607+
\caption[Species evolution in a 2-order 1-step finite rate reaction]{Time evolution of species mass fraction for a one-step second-order Arrhenius finite rate reaction. The top plot is using RK2-Richardson ODE solver and the bottom plot is using CVODE ODE solver.}
36093608
\label{fig:Arrhenius_2Order_1step}
36103609
\end{figure}
36113610
Multi-step Arrhenius finite rate reactions are also examined. First, we consider a two-step forward propane reaction:
@@ -3661,23 +3660,21 @@ \subsection{Finite Rate Reactions (\texorpdfstring{\ct{reactionrate\_arrhenius}}
36613660

36623661
\begin{figure}[h!]
36633662
\centering
3664-
\setlength{\tabcolsep}{-10pt}
3665-
\begin{tabular*}{\textwidth}{lr}
3666-
\includegraphics[trim={20pt 0pt 20pt 0pt}, clip, height=1.8in]{SCRIPT_FIGURES/reactionrate_arrhenius_1p75order_2step}
3667-
\includegraphics[trim={20pt 0pt 20pt 0pt}, clip, height=1.8in]{SCRIPT_FIGURES/reactionrate_arrhenius_1p75order_2step_cvode}
3668-
\end{tabular*}
3669-
\caption[Species evolution in a 1.75-order 2-step finite rate reaction]{Time evolution of species mass fraction for a two-step Arrhenius finite rate propane reactions. The left plot is using RK2-Richardson ODE solver and the right plot is using CVODE ODE solver.}
3663+
\begin{tabular}{c}
3664+
\includegraphics[height=2.2in]{SCRIPT_FIGURES/reactionrate_arrhenius_1p75order_2step} \\
3665+
\includegraphics[height=2.2in]{SCRIPT_FIGURES/reactionrate_arrhenius_1p75order_2step_cvode}
3666+
\end{tabular}
3667+
\caption[Species evolution in a 1.75-order 2-step finite rate reaction]{Time evolution of species mass fraction for a two-step Arrhenius finite rate propane reactions. The top plot is using RK2-Richardson ODE solver and the bottom plot is using CVODE ODE solver.}
36703668
\label{fig:Arrhenius_175Order_2step}
36713669
\end{figure}
36723670

36733671
\begin{figure}[h!]
36743672
\centering
3675-
\setlength{\tabcolsep}{-10pt}
3676-
\begin{tabular*}{\textwidth}{lr}
3677-
\includegraphics[height=1.8in]{SCRIPT_FIGURES/reactionrate_arrhenius_1p75order_2stepr}
3678-
\includegraphics[height=1.8in]{SCRIPT_FIGURES/reactionrate_arrhenius_1p75order_2stepr_cvode}
3679-
\end{tabular*}
3680-
\caption[Species evolution in a 1.75-order 2-step reversible finite rate reaction]{Time evolution of species mass fraction for a two-step reversible Arrhenius finite rate propane reactions. The left plot is using RK2-Richardson ODE solver and the right plot is using CVODE ODE solver.}
3673+
\begin{tabular}{c}
3674+
\includegraphics[height=2.2in]{SCRIPT_FIGURES/reactionrate_arrhenius_1p75order_2stepr} \\
3675+
\includegraphics[height=2.2in]{SCRIPT_FIGURES/reactionrate_arrhenius_1p75order_2stepr_cvode}
3676+
\end{tabular}
3677+
\caption[Species evolution in a 1.75-order 2-step reversible finite rate reaction]{Time evolution of species mass fraction for a two-step reversible Arrhenius finite rate propane reactions. The top plot is using RK2-Richardson ODE solver and the bottom plot is using CVODE ODE solver.}
36813678
\label{fig:Arrhenius_175Order_2stepR}
36823679
\end{figure}
36833680

@@ -3698,12 +3695,11 @@ \subsection{Finite Rate Reactions (\texorpdfstring{\ct{reactionrate\_arrhenius}}
36983695

36993696
\begin{figure}[h!]
37003697
\centering
3701-
\setlength{\tabcolsep}{-10pt}
3702-
\begin{tabular*}{\textwidth}{lr}
3703-
\includegraphics[trim={20pt 0pt 20pt 0pt}, clip, height=1.8in]{SCRIPT_FIGURES/reactionrate_equilibrium_species}
3704-
\includegraphics[trim={20pt 0pt 20pt 0pt}, clip, height=1.8in]{SCRIPT_FIGURES/reactionrate_equilibrium_species_cvode}
3705-
\end{tabular*}
3706-
\caption[Species evolution in an equilibrium case]{Time evolution of species mass fraction for a two-step Arrhenius finite rate reaction compared to Cantera values. The left plot is using RK2-Richardson ODE solver and the right plot is using CVODE ODE solver.}
3698+
\begin{tabular}{c}
3699+
\includegraphics[height=2.2in]{SCRIPT_FIGURES/reactionrate_equilibrium_species} \\
3700+
\includegraphics[height=2.2in]{SCRIPT_FIGURES/reactionrate_equilibrium_species_cvode}
3701+
\end{tabular}
3702+
\caption[Species evolution in an equilibrium case]{Time evolution of species mass fraction for a two-step Arrhenius finite rate reaction compared to Cantera values. The top plot is using RK2-Richardson ODE solver and the bottom plot is using CVODE ODE solver.}
37073703
\label{fig:Arrhenius_2Order_1stepb}
37083704
\end{figure}
37093705

@@ -3712,7 +3708,7 @@ \subsection{Finite Rate Reactions (\texorpdfstring{\ct{reactionrate\_arrhenius}}
37123708
\includegraphics[height=2.2in]{SCRIPT_FIGURES/reactionrate_equilibrium_temperature} &
37133709
\includegraphics[height=2.2in]{SCRIPT_FIGURES/reactionrate_equilibrium_pressure} \\
37143710
\includegraphics[height=2.2in]{SCRIPT_FIGURES/reactionrate_equilibrium_temperature_cvode} &
3715-
\includegraphics[height=2.2in]{SCRIPT_FIGURES/reactionrate_equilibrium_pressure_cvode} \\
3711+
\includegraphics[height=2.2in]{SCRIPT_FIGURES/reactionrate_equilibrium_pressure_cvode}
37163712
\end{tabular*}
37173713
\caption[Temperature and pressure evolution for equilibrium case]{Time evolution of temperature (left) and pressure (right) for two-step Arrhenius finite rate propane reactions compared to Cantera values. The top row is using RK2-Richardson ODE solver and the bottom row is using CVODE ODE solver.}
37183714
\label{fig:Arrhenius_175Order_23stepb}
@@ -3752,12 +3748,11 @@ \subsection{Finite Rate Reactions (\texorpdfstring{\ct{reactionrate\_arrhenius}}
37523748

37533749
\begin{figure}[h!]
37543750
\centering
3755-
\setlength{\tabcolsep}{-10pt}
3756-
\begin{tabular*}{\textwidth}{lr}
3757-
\includegraphics[trim={20pt 0pt 20pt 0pt}, clip, height=1.8in]{SCRIPT_FIGURES/reactionrate_jones_lindstedt_species}
3758-
\includegraphics[trim={20pt 0pt 20pt 0pt}, clip, height=1.8in]{SCRIPT_FIGURES/reactionrate_jones_lindstedt_species_cvode}
3759-
\end{tabular*}
3760-
\caption[Species evolution in Jones-Lindstedt case]{Time evolution of species mass fraction for Jones-Lindstedt four-step Arrhenius finite rate reaction compared to Cantera values. The left plot is using RK2-Richardson ODE solver and the right plot is using CVODE ODE solver.}
3751+
\begin{tabular}{c}
3752+
\includegraphics[height=2.2in]{SCRIPT_FIGURES/reactionrate_jones_lindstedt_species} \\
3753+
\includegraphics[height=2.2in]{SCRIPT_FIGURES/reactionrate_jones_lindstedt_species_cvode}
3754+
\end{tabular}
3755+
\caption[Species evolution in Jones-Lindstedt case]{Time evolution of species mass fraction for Jones-Lindstedt four-step Arrhenius finite rate reaction compared to Cantera values. The top plot is using RK2-Richardson ODE solver and the bottom plot is using CVODE ODE solver.}
37613756
\label{fig:jones_lindstedt_species}
37623757
\end{figure}
37633758

@@ -4302,38 +4297,38 @@ \section{Smoke Detector Model (\texorpdfstring{\ct{smoke\_detector}}{smoke\_dete
43024297

43034298

43044299
\section{Aerosol Behavior}
4305-
\subsection{Gravitational Settling and Deposition of Aerosols\\(\texorpdfstring{\ct{aerosol\_gravitational\_deposition}}{aerosol\_gravitational\_deposition})}
4300+
\subsection{Gravitational Settling and Deposition of Aerosols\\(\texorpdfstring{\ct{aerosol_gravitational_deposition}}{aerosol\_gravitational\_deposition})}
43064301
\label{aerosol_gravitational_deposition}
43074302

43084303
This verification test consists of two test cases. The second case, \ct{aerosol\_gravitational\_deposition\_2}, reverses the z-component of gravity. The case consists of a box 10~cm on side with adiabatic, free-slip side walls. The box is filled with two gas species each having a molecular weight of 28.8~g/mol, a viscosity of 0.00002~\si{kg/(m.s}, a thermal conductivity of 0.025~\si{W/(m.K}, and specific heat of 1~\si{kJ/(kg.K}, and zero diffusivity. One of the gas species is defined as an aerosol with a diameter of 10~$\mu$m, a solid phase density of 2000~kg/m$^3$, and a solid phase conductivity of 1~\si{W/(m.K}. The initial mass fraction of the aerosol is 0.00001. \ct{STRATIFICATION}, \ct{NOISE}, and all aerosol behaviors except for \ct{GRAVITATIONAL\_SETTLING} and \ct{GRAVITATIONAL\_DEPOSITION} are turned off. Since the box has a constant density over its height, a uniform settling rate over time is expected.
43094304

43104305
\begin{figure}[ht]
4311-
\centering
4312-
\begin{tabular}{c}
4313-
\includegraphics[height=2.2in]{SCRIPT_FIGURES/aerosol_gravitational_deposition_gas}
4314-
\includegraphics[height=2.2in]{SCRIPT_FIGURES/aerosol_gravitational_deposition_wall} \\
4315-
\includegraphics[height=2.2in]{SCRIPT_FIGURES/aerosol_gravitational_deposition_2_gas}
4316-
\includegraphics[height=2.2in]{SCRIPT_FIGURES/aerosol_gravitational_deposition_2_wall}
4317-
\end{tabular}
4318-
\caption[Gas phase soot mass fractions and wall surface densities for gravitational deposition]{Time evolution of soot mass fraction in the gas (left) and soot surface density on the wall (right) for the \ct{aerosol\_gravitational\_deposition} (Top) and \ct{aerosol\_gravitational\_deposition\_2} (Bottom) cases.}
4319-
\label{fig:gravitational_deposition}
4306+
\noindent
4307+
\begin{tabular*}{\textwidth}{l@{\extracolsep{\fill}}r}
4308+
\includegraphics[height=2.2in]{SCRIPT_FIGURES/aerosol_gravitational_deposition_gas} &
4309+
\includegraphics[height=2.2in]{SCRIPT_FIGURES/aerosol_gravitational_deposition_wall} \\
4310+
\includegraphics[height=2.2in]{SCRIPT_FIGURES/aerosol_gravitational_deposition_2_gas} &
4311+
\includegraphics[height=2.2in]{SCRIPT_FIGURES/aerosol_gravitational_deposition_2_wall}
4312+
\end{tabular*}
4313+
\caption[Gas phase soot mass fractions and wall surface densities for gravitational deposition]{Time evolution of soot mass fraction in the gas (left) and soot surface density on the wall (right) for the \ct{aerosol\_gravitational\_deposition} (Top) and \ct{aerosol\_gravitational\_deposition\_2} (Bottom) cases.}
4314+
\label{fig:gravitational_deposition}
43204315
\end{figure}
43214316

4322-
\subsection{Thermophoretic Settling and Deposition of Aerosols\\(\texorpdfstring{\ct{aerosol\_thermophoretic\_deposition}}{aerosol\_thermophoretic\_deposition})}
4317+
\subsection{Thermophoretic Settling and Deposition of Aerosols\\(\texorpdfstring{\ct{aerosol_thermophoretic_deposition}}{aerosol\_thermophoretic\_deposition})}
43234318
\label{aerosol_thermophoretic_deposition}
43244319

43254320
This verification test consists of two test cases. The second case, \ct{aerosol\_thermophoretic\_deposition\_2}, reverses the temperature gradient. The case consists of a box 1~cm on side with adiabatic, free-slip side walls and a 100 K temperature gradient over the height of the box. The box is filled with two gas species each having a molecular weight of 28.8~g/mol, a viscosity of 0.00002~\si{kg/(m.s}, a thermal conductivity of 0.025~\si{W/(m.K}, and specific heat of 1~\si{kJ/(kg.K}, and zero diffusivity. One of the gas species is defined as an aerosol with a diameter of 1~$\mu$m, a solid phase density of 2000~kg/m$^3$, and a solid phase conductivity of 1~\si{W/(m.K}. The initial mass fraction of the aerosol is 0.00001. The gas temperature is initialized to its steady-state temperature gradient. \ct{STRATIFICATION}, \ct{NOISE}, and all aerosol behaviors except for \ct{THERMOPHORETIC\_SETTLING} and \ct{THERMOPHORETIC\_DEPOSITION} are turned off. Thermophoretic settling rates are weakly dependent on the gas density. Since there is a temperature gradient, the settlings rates are not uniform over the height of the box. Unlike the gravitational settling case, this means over long enough time periods the overall settling rate is not linear in time; however, for a short time period a near linear settling rate is expected and can be determined analytically
43264321

43274322
\begin{figure}[ht]
4328-
\centering
4329-
\begin{tabular}{c}
4330-
\includegraphics[height=2.2in]{SCRIPT_FIGURES/aerosol_thermophoretic_deposition_gas}
4331-
\includegraphics[height=2.2in]{SCRIPT_FIGURES/aerosol_thermophoretic_deposition_wall} \\
4332-
\includegraphics[height=2.2in]{SCRIPT_FIGURES/aerosol_thermophoretic_deposition_2_gas}
4333-
\includegraphics[height=2.2in]{SCRIPT_FIGURES/aerosol_thermophoretic_deposition_2_wall}
4334-
\end{tabular}
4335-
\caption[Gas phase soot densities and wall surface densities for thermophoretic deposition]{Time evolution of soot density in the gas (left) and soot surface density on the wall (right) for the \ct{aerosol\_thermophoretic\_deposition} (Top) and \ct{aerosol\_thermophoretic\_deposition\_2} (Bottom) cases.}
4336-
\label{fig:thermophoretic_deposition}
4323+
\noindent
4324+
\begin{tabular*}{\textwidth}{l@{\extracolsep{\fill}}r}
4325+
\includegraphics[height=2.2in]{SCRIPT_FIGURES/aerosol_thermophoretic_deposition_gas} &
4326+
\includegraphics[height=2.2in]{SCRIPT_FIGURES/aerosol_thermophoretic_deposition_wall} \\
4327+
\includegraphics[height=2.2in]{SCRIPT_FIGURES/aerosol_thermophoretic_deposition_2_gas} &
4328+
\includegraphics[height=2.2in]{SCRIPT_FIGURES/aerosol_thermophoretic_deposition_2_wall}
4329+
\end{tabular*}
4330+
\caption[Gas phase soot densities and wall surface densities for thermophoretic deposition]{Time evolution of soot density in the gas (left) and soot surface density on the wall (right) for the \ct{aerosol\_thermophoretic\_deposition} (Top) and \ct{aerosol\_thermophoretic\_deposition\_2} (Bottom) cases.}
4331+
\label{fig:thermophoretic_deposition}
43374332
\end{figure}
43384333

43394334
\subsection{Turbulent Deposition of Aerosols (\texorpdfstring{\ct{aerosol\_turbulent\_deposition}}{aerosol\_turbulent\_deposition})}

0 commit comments

Comments
 (0)