Skip to content

Commit 40c49f3

Browse files
authored
Merge pull request #14384 from rmcdermo/master
Manuals: fix TOC captions
2 parents fcc0585 + ca781cb commit 40c49f3

File tree

7 files changed

+92
-57
lines changed

7 files changed

+92
-57
lines changed

Manuals/FDS_Technical_Reference_Guide/Appendices.tex

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -506,7 +506,7 @@ \subsubsection{Carbon Monoxide: $\rm CO$}
506506
Carbon Monoxide is a diatomic molecule and as such, it has only one vibrational mode \cite{Herzberg:1949}. RADCAL includes one distinct band, see Table \ref{Table::CO}.
507507
\begin{table}[h!]
508508
\centering
509-
\caption{Spectral bands of $\rm CO$ included in RADCAL.}
509+
\caption[Spectral bands of $\rm CO$ included in RADCAL]{Spectral bands of $\rm CO$ included in RADCAL.}
510510
\vspace{0.1in}
511511
\label{Table::CO}
512512
\begin{tabular}{|c|c|c|c|}

Manuals/FDS_User_Guide/FDS_User_Guide.tex

Lines changed: 29 additions & 31 deletions
Original file line numberDiff line numberDiff line change
@@ -791,7 +791,7 @@ \section{Input File Structure}
791791
\vspace{\baselineskip}
792792
\begin{table}[ht]
793793
\begin{center}
794-
\caption{Namelist Group Reference Table}
794+
\caption[Namelist Group Reference Table]{Namelist Group Reference Table}
795795
\label{tbl:namelistgroups}
796796
\begin{tabular}{|c|l|c|c|}
797797
\hline
@@ -943,7 +943,7 @@ \subsubsection{Simulation Time Ramp}
943943
\begin{figure}[ht!]
944944
\centering
945945
\includegraphics[width=3.2in]{SCRIPT_FIGURES/ramp_time}
946-
\caption{An example of ramping the simulation time values.}
946+
\caption[Ramping simulation time values]{An example of ramping the simulation time values.}
947947
\label{fig:ramp_time}
948948
\end{figure}
949949

@@ -1003,7 +1003,7 @@ \subsection{Multiple Meshes}
10031003

10041004
\begin{figure}[ht!]
10051005
\includegraphics[width=\textwidth]{FIGURES/hallways}
1006-
\caption{An example of a multiple-mesh geometry.}
1006+
\caption[Multiple-mesh geometry]{An example of a multiple-mesh geometry.}
10071007
\label{fig:domain}
10081008
\end{figure}
10091009

@@ -1312,7 +1312,7 @@ \subsection{Method for avoiding mesh interfaces in blockage outline view}
13121312
outlines drawn at blockage edges and mesh interfaces&outlines drawn as specified in the input file
13131313
\end{tabular}
13141314
\end{center}
1315-
\caption[Blockage outlines drawn at mesh interfaces and as specified in the input file.]{Blockage outlines drawn at mesh interfaces and as specified in the input file.}
1315+
\caption[Blockage outlines at mesh interfaces and as specified in the input file]{Blockage outlines drawn at mesh interfaces and as specified in the input file.}
13161316
\label{fig:outlinehack}%
13171317
\end{figure}
13181318

@@ -2765,7 +2765,7 @@ \section{Specified Heat Release Rate}
27652765
\begin{figure}[ht]
27662766
\centering
27672767
\includegraphics[width=3.2in]{SCRIPT_FIGURES/multiple_reac_hrrpua}
2768-
\caption[Demonstration of specifying HRRPUA with multiple reactions.]{Demonstration of specifying HRRPUA with multiple reactions.}
2768+
\caption[Specifying HRRPUA with multiple reactions]{Demonstration of specifying HRRPUA with multiple reactions.}
27692769
\label{fig:mulitple_reac_hrrpua}
27702770
\end{figure}
27712771

@@ -2864,7 +2864,7 @@ \subsection{Scaling Pyrolysis (SPyro) Model: Scaled Burning Rate from Cone Data}
28642864
\begin{figure}[ht]
28652865
\centering
28662866
\includegraphics[width=3.2in]{SCRIPT_FIGURES/spyro_cone_demo}
2867-
\caption[Demonstration of extrapolating cone test data to other heat fluxes.]{Demonstration of extrapolating cone test data to other heat fluxes.}
2867+
\caption[Extrapolating cone test data to other heat fluxes]{Demonstration of extrapolating cone test data to other heat fluxes.}
28682868
\label{fig:spyro_cone_demo}
28692869
\end{figure}
28702870

@@ -6231,7 +6231,7 @@ \subsection{Drag}
62316231

62326232
\begin{table}[ht]
62336233
\begin{center}
6234-
\caption{Drag laws available in FDS}
6234+
\caption[Drag laws available in FDS]{Drag laws available in FDS}
62356235
\label{tbl:draglaws}
62366236
\begin{tabular}{|c|c|}
62376237
\hline
@@ -8881,14 +8881,14 @@ \section{Simulation Mode}
88818881

88828882
\begin{table}[ht]
88838883
\centering
8884-
\caption{Parameters effected by \ct{SIMULATION_MODE}.}
8884+
\caption[Parameters effected by \ct{SIMULATION_MODE}]{Parameters effected by \ct{SIMULATION_MODE}.}
88858885
\label{tbl:SIMULATION_MODE}
88868886
\begin{tabular}{|l|c|c|c|c|c|}
88878887
\hline
8888-
Key Parameter & Section & \ct{'DNS'} & \ct{'LES'} & \ct{'VLES'} & \ct{'SVLES'} \\ \hline \hline
8889-
\ct{CFL_VELOCITY_NORM} & \ref{info:CFL} & 1 & 1 & 2 & 3 \\ \hline
8890-
\ct{CHECK_VN} & \ref{info:VN} & T & T & T & F \\ \hline
8891-
\ct{FLUX_LIMITER} & \ref{info:flux_limiters} & \ct{'CHARM'} & \ct{'CHARM'} & \ct{'SUPERBEE'} & \ct{'SUPERBEE'} \\ \hline
8888+
Key Parameter & Section & \ct{'DNS'} & \ct{'LES'} & \ct{'VLES'} & \ct{'SVLES'} \\ \hline \hline
8889+
\ct{CFL_VELOCITY_NORM} & \ref{info:CFL} & 1 & 1 & 2 & 3 \\ \hline
8890+
\ct{CHECK_VN} & \ref{info:VN} & T & T & T & F \\ \hline
8891+
\ct{FLUX_LIMITER} & \ref{info:flux_limiters} & \ct{'CHARM'} & \ct{'CHARM'} & \ct{'SUPERBEE'} & \ct{'SUPERBEE'} \\ \hline
88928892
\ct{CONSTANT_SPECIFIC_HEAT_RATIO} & \ref{info:Enthalpy} & F & F & F & T \\ \hline
88938893
\ct{EXTINCTION_MODEL} & ~\ref{info:extinction} & 2 & 2 & 1 & 1 \\ \hline
88948894
\end{tabular}
@@ -14458,7 +14458,7 @@ \section{FDS Source Code}
1445814458

1445914459
\begin{table}[ht]
1446014460
\begin{center}
14461-
\caption{FDS source code files}
14461+
\caption[FDS source code files]{FDS source code files}
1446214462
\label{tab:sourcefiles}
1446314463
\vspace{.1in}
1446414464
\begin{tabular}{|l|l|}
@@ -14869,7 +14869,6 @@ \section{FDS GEOM I/O binary format ({\tt .bingeom})}
1486914869
WRITE(LU_BINGEOM) FACES(1:3*N_FACES)
1487014870
WRITE(LU_BINGEOM) SURFS(1:N_FACES)
1487114871
WRITE(LU_BINGEOM) VOLUS(1:4*N_VOLUS)
14872-
1487314872
\end{lstlisting}
1487414873

1487514874
\noindent where:
@@ -14944,23 +14943,22 @@ \section{FDS HVAC I/O binary format}
1494414943
\label{inout:binhvac}
1494514944
The HVAC outputs under the namelist group \ct{HVAC} are written out unformatted to the file \ct{CHID.hvac}. These files are written out from \ct{dump.f90} with the following lines:
1494614945
\begin{lstlisting}
14947-
WRITE(LU_HVAC) N_NODE_OUT, N_NODE_QUANTITY, N_DUCT_OUT, N_DUCT_QUANTITY
14948-
WRITE(LU_HVAC) DUCT_CELL(1:N_DUCT_OUT)
14949-
14950-
WRITE(LU_HVAC) TIME
14951-
DO N=1,N_NODE_OUT
14952-
WRITE(LU_HVAC) OUTVAL_N(1:N_NODE_QUANTITY)
14953-
ENDDO
14954-
DO N=1,N_DUCT_OUT
14955-
IF (DUCT(N)%N_CELLS > 0) THEN
14956-
DO N=1,DUCT(N)%N_CELLS
14957-
WRITE(LU_HVAC) OUTVAL_D(1:N_DUCT_QUANTITY)
14958-
ENDDO
14959-
ELSE
14960-
WRITE(LU_HVAC) OUTVAL_D(1:N_DUCT_QUANTITY)
14961-
ENDIF
14962-
ENDDO
14946+
WRITE(LU_HVAC) N_NODE_OUT, N_NODE_QUANTITY, N_DUCT_OUT, N_DUCT_QUANTITY
14947+
WRITE(LU_HVAC) DUCT_CELL(1:N_DUCT_OUT)
1496314948

14949+
WRITE(LU_HVAC) TIME
14950+
DO N=1,N_NODE_OUT
14951+
WRITE(LU_HVAC) OUTVAL_N(1:N_NODE_QUANTITY)
14952+
ENDDO
14953+
DO N=1,N_DUCT_OUT
14954+
IF (DUCT(N)%N_CELLS > 0) THEN
14955+
DO N=1,DUCT(N)%N_CELLS
14956+
WRITE(LU_HVAC) OUTVAL_D(1:N_DUCT_QUANTITY)
14957+
ENDDO
14958+
ELSE
14959+
WRITE(LU_HVAC) OUTVAL_D(1:N_DUCT_QUANTITY)
14960+
ENDIF
14961+
ENDDO
1496414962
\end{lstlisting}
1496514963
where \ct{DUCT_CELL} is the number of mass transport cells for a duct (if a duct doesn't have mass transport, then the value 1 is written), and the second block of output is written for each \ct{DT_HVAC} output interval.
1496614964

@@ -14973,7 +14971,7 @@ \section{File Extension Glossary}
1497314971
\vspace{\baselineskip}
1497414972
\begin{table}[ht]
1497514973
\begin{center}
14976-
\caption{File Extension Reference Table}
14974+
\caption[File Extension Reference Table]{File Extension Reference Table}
1497714975
\label{tbl:fileextensions}
1497814976
\begin{tabular}{|c|l|c|}
1497914977
\hline

Manuals/FDS_Validation_Guide/Ceiling_Jet_Chapter.tex

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -796,7 +796,7 @@ \subsection{UL/NIJ House Experiments}
796796
\includegraphics[height=2.15in]{SCRIPT_FIGURES/UL_NIJ_Houses/Two_Story_Gas_4_CJ_LR} &
797797
\includegraphics[height=2.15in]{SCRIPT_FIGURES/UL_NIJ_Houses/Two_Story_Gas_6_CJ_LR} \\
798798
\end{tabular*}
799-
\caption{UL/NIJ Experiments, ceiling jet temperature}
799+
\caption[UL/NIJ Experiments, ceiling jet temperature]{UL/NIJ Experiments, ceiling jet temperature}
800800
\label{UL_NIJ_CJ_1}
801801
\end{figure}
802802

Manuals/FDS_Validation_Guide/Experiment_Chapter.tex

Lines changed: 19 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -44,7 +44,7 @@ \section{ATF Corridors Experiments}
4444

4545
\begin{figure}[p]
4646
\includegraphics[width=\textwidth]{FIGURES/ATF_Corridors/ATF_Corridors_Drawing}
47-
\caption{Geometry of the ATF Corridors Experiments.}
47+
\caption[Geometry of the ATF Corridors Experiments]{Geometry of the ATF Corridors Experiments.}
4848
\label{ATF Drawing}
4949
\end{figure}
5050

@@ -433,7 +433,7 @@ \section{Cup Burner Experiments}
433433
The cup-burner is a widely used experimental apparatus for studying the effectiveness of flame extinguishing agents. Typically, these experiments feature a steady fuel-air co-flow diffusion flame that is established above the cup. The extinguishing agent is gradually introduced into the air stream to determine the minimum concentration of the agent that leads to lift off. One hundred and ten experimental data sets are examined. The data sets include sixteen fuels: acetone, acetylene, benzene, butane, dodecane, ethanol, ethylene, heptane, hexane, hydrogen, methane, methanol, octane, propanol, and toluene, and five inert gases: argon (Ar), carbon dioxide (CO$_2$), helium (He), and nitrogen (N$_2$), and sulfur hexaflouride (SF$_6$). A STANJAN\footnote{STANJAN is a program for chemical equilibrium calculations.} calculation has been performed to determine the equilibrium temperature using the measured minimum extinguishing concentration for each experiment. The calculation assumes constant pressure and enthalpy using a stoichiometric mixture of fuel and air plus agent. For combinations of fuel and agent with multiple experiments, the average extinguishing concentration and the average flame temperature is taken, resulting in forty-six unique combinations of fuel and agent listed in Table~\ref{Cup_Table}.
434434

435435
\begin{table}[p]
436-
\caption{Summary of Cup Burner Data}
436+
\caption[Summary of Cup Burner Data]{Summary of Cup Burner Data}
437437
\label{Cup_Table}
438438
\small
439439
\begin{tabular}{|l|c|c|c|c|l|}
@@ -664,7 +664,7 @@ \subsubsection{Modeling Notes}
664664

665665
\begin{figure}[!ht]
666666
\includegraphics[width=\textwidth]{FIGURES/FHWA_Tunnel/IFAB_photo.jpg}
667-
\caption{Photograph taken upwind of the fire in one of the FHWA/IFAB experiments.}
667+
\caption[Upwind of the fire in an FHWA/IFAB experiment]{Photograph taken upwind of the fire in one of the FHWA/IFAB experiments.}
668668
\label{IFAB_photo}
669669
\end{figure}
670670

@@ -800,7 +800,7 @@ \section{FM/SNL Experiments}
800800
%
801801
%\begin{table}[h!]
802802
%\centering
803-
%\caption{Summary of FPRF/HAI Corridor Experiments.}
803+
%\caption[Summary of FPRF/HAI Corridor Experiments]{Summary of FPRF/HAI Corridor Experiments.}
804804
%\begin{tabular}{|c|c|c|c|}
805805
%\hline
806806
%Test & Ceiling Height & Ceiling Width & Beam Depth \\
@@ -888,7 +888,7 @@ \section{Harrison Spill Plumes}
888888
\begin{figure}[!ht]
889889
\centering
890890
\includegraphics[width=5in]{FIGURES/Harrison_Spill_Plumes/Harrison_Spill_Plumes}
891-
\caption{Geometry of the Harrison Spill Plumes Experiments.}
891+
\caption[Geometry of the Harrison Spill Plumes Experiments]{Geometry of the Harrison Spill Plumes Experiments.}
892892
\label{Harrison_Drawing}
893893
\end{figure}
894894

@@ -1035,7 +1035,7 @@ \subsubsection{Modeling Notes}
10351035

10361036
\begin{table}[h]
10371037
\centering
1038-
\caption{Thermophysical properties.}
1038+
\caption[Thermophysical properties]{Thermophysical properties.}
10391039
\small
10401040
\renewcommand{\arraystretch}{1.2}
10411041
\begin{tabular}{lcccccc}
@@ -1064,7 +1064,7 @@ \subsubsection{Modeling Notes}
10641064

10651065
\begin{table}[h]
10661066
\centering
1067-
\caption{Kinetic parameters and yields.}
1067+
\caption[Kinetic parameters and yields]{Kinetic parameters and yields.}
10681068
\small
10691069
\renewcommand{\arraystretch}{1.2}
10701070
\begin{tabular}{lcccccccccr}
@@ -1112,7 +1112,7 @@ \section{Lattimer Corridor Ceiling}
11121112
\begin{figure}[!ht]
11131113
\centering
11141114
\includegraphics[width=6in]{FIGURES/Lattimer_Corridor_Ceiling/lattimer_apparatus.png}
1115-
\caption{Lattimer fire impinging on a corridor ceiling experiments~\cite{Lattimer:FTJ:2013}.}
1115+
\caption[Lattimer fire impinging on a corridor ceiling experiments]{Lattimer fire impinging on a corridor ceiling experiments~\cite{Lattimer:FTJ:2013}.}
11161116
\label{fig:lattimer}
11171117
\end{figure}
11181118

@@ -1709,7 +1709,7 @@ \subsection{NIST Reduced Scale Enclosure Experiments, 2007}
17091709

17101710
\begin{table}[!ht]
17111711
\centering
1712-
\caption{Summary of NIST Reduced-Scale Experiments, 2007.}
1712+
\caption[Summary of NIST Reduced-Scale Experiments, 2007]{Summary of NIST Reduced-Scale Experiments, 2007.}
17131713
\begin{tabular}{|c|c|c|c|c|c|}
17141714
\hline
17151715
Test & Fuel & Fuel & Peak & Burner & Doorway \\
@@ -1973,7 +1973,7 @@ \subsection{Cabinet Effects}
19731973
The test matrix is as follows:
19741974
\begin{table}[!ht]
19751975
\centering
1976-
\caption{Summary of NIST/NRC Cabinet Experiments.}
1976+
\caption[Summary of NIST/NRC Cabinet Experiments]{Summary of NIST/NRC Cabinet Experiments.}
19771977
\begin{tabular}{|c|c|c|c|l|l|}
19781978
\hline
19791979
Test & Cabinet & Front Door & Top Vents & Upper Side Vents & HRR (kW) \\ \hline \hline
@@ -2215,7 +2215,7 @@ \section{NIST Soot Deposition Gauge}
22152215

22162216
\begin{table}[h!]
22172217
\centering
2218-
\caption{Experiment Details for Gravimetric Measurements of Soot Deposition}
2218+
\caption[Experiment Details for Gravimetric Measurements of Soot Deposition]{Experiment Details for Gravimetric Measurements of Soot Deposition}
22192219
\begin{tabular}{|c|c|c|c|}
22202220
\hline
22212221
Test no. & Flow Speed & $\Delta$T & Inlet Soot Conc. \\
@@ -2320,7 +2320,7 @@ \subsubsection{Thermocouples}
23202320

23212321
\begin{table}[h!]
23222322
\centering
2323-
\caption{Heights of the thermocouples above the floor of each level of the enclosure}
2323+
\caption[Heights of the thermocouples above the floor]{Heights of the thermocouples above the floor of each level of the enclosure}
23242324
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
23252325
\hline
23262326
Floor 2 TC's & 1& 2& 3 & 4& 5& 6& 7&8\\ \hline
@@ -2337,7 +2337,7 @@ \subsubsection{Test Procedure}
23372337

23382338
\begin{table}[h!]
23392339
\centering
2340-
\caption{Vent State by Experiment: Time Opened}
2340+
\caption[Vent State by Experiment: Time Opened]{Vent State by Experiment: Time Opened}
23412341
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
23422342
\hline
23432343
Test & Front & Left & Right & Left & Right & Left & Right & Right & Roof \\
@@ -2414,13 +2414,13 @@ \section{NRCC Smoke Tower Experiments}
24142414
%
24152415
%\begin{figure}[ht]
24162416
%%\includegraphics[width=5.in]{FIGURES/NRL_Confined_Space/confined_space_hvac_layout}
2417-
%\caption{Confined space HVAC system layouts.}
2417+
%\caption[Confined space HVAC system layouts]{Confined space HVAC system layouts.}
24182418
%\label{confined_HVAC}
24192419
%\end{figure}
24202420
%
24212421
%\begin{figure}[ht]
24222422
%%\includegraphics[width=5.in]{FIGURES/NRL_Confined_Space/confined_space_bypass}
2423-
%\caption{Confined space bypass ducts.}
2423+
%\caption[Confined space bypass ducts]{Confined space bypass ducts.}
24242424
%\label{confined_bypass}
24252425
%\end{figure}
24262426
%
@@ -3032,7 +3032,7 @@ \section{UL/NIST Vent Experiments}
30323032

30333033
\begin{figure}[ht]
30343034
\includegraphics[width=\textwidth]{FIGURES/UL_NIST_Vents/UL_NIST_Vents_Drawing}
3035-
\caption{Geometry of the UL/NIST Experiments.}
3035+
\caption[Geometry of the UL/NIST Experiments]{Geometry of the UL/NIST Experiments.}
30363036
\label{UL_NIST_Drawing}
30373037
\end{figure}
30383038

@@ -3362,7 +3362,7 @@ \section{UL/NIJ House Experiments}
33623362

33633363
\begin{figure}[p]
33643364
\includegraphics[width=\textwidth]{FIGURES/UL_NIJ_Houses/UL_NIJ_Colonial_layout}
3365-
\caption{Geometry of UL NIJ Colonial-style House}
3365+
\caption[Geometry of UL NIJ Colonial-style House]{Geometry of UL NIJ Colonial-style House}
33663366
\label{Colonial_layout}
33673367
\end{figure}
33683368

@@ -3543,7 +3543,7 @@ \section{UMD SBI Experiment}
35433543

35443544
\begin{figure}[!ht]
35453545
\includegraphics[width=\textwidth]{FIGURES/UMD_SBI/UMDCornerFireSpreadSetup}
3546-
\caption[Schematic diagram of the UMD SBI experiment.]{Schematic diagram of the UMD SBI experiment.}
3546+
\caption[Schematic diagram of the UMD SBI experiment]{Schematic diagram of the UMD SBI experiment.}
35473547
\label{UMD_SBI_Schematic}
35483548
\end{figure}
35493549

@@ -3765,7 +3765,7 @@ \section{Wasson Impinging Plumes}
37653765
\begin{figure}[htb!]
37663766
\centering
37673767
\includegraphics[width=6in]{FIGURES/Wasson_Impinging_Plumes/wasson_apparatus_01.png}
3768-
\caption{Wasson fire impinging on an unconfined ceiling~\cite{Wasson2014:Thesis}.}
3768+
\caption[Wasson fire impinging on an unconfined ceiling]{Wasson fire impinging on an unconfined ceiling~\cite{Wasson2014:Thesis}.}
37693769
\label{Wasson_Impinging_Plumes_fig}
37703770
\end{figure}
37713771

Manuals/FDS_Validation_Guide/Heat_Flux_Chapter.tex

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2350,7 +2350,7 @@ \subsection{UMD Line Burner}
23502350
\begin{figure}[h!]
23512351
\centering
23522352
\includegraphics[height=3in]{FIGURES/UMD_Line_Burner/integrated_intensity}
2353-
\caption{UMD Line Burner contour of integrated radiation intensity.}
2353+
\caption[UMD Line Burner contour of integrated radiation intensity]{UMD Line Burner contour of integrated radiation intensity.}
23542354
\label{fig_umd_integrated_intensity}
23552355
\end{figure}
23562356

Manuals/FDS_Verification_Guide/FDS_Verification_Guide.tex

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -3023,7 +3023,7 @@ \section{Radiation inside a Box (\texorpdfstring{\ct{radiation_box}}{radiation\_
30233023
\begin{figure}[ht]
30243024
\centering
30253025
\includegraphics[width=4.0in]{FIGURES/box}
3026-
\caption{\label{fig_box_radiation} Radiation inside a box geometry.}
3026+
\caption[Radiation inside a box geometry]{\label{fig_box_radiation} Radiation inside a box geometry.}
30273027
\end{figure}
30283028
The configuration factors are calculated at the diagonal of the cold wall opposite to the hot wall. The exact values of the configuration factor from plane element $\d A$ to parallel rectangle $H$ are calculated using the analytical solution~\cite{Siegel:1}
30293029
\begin{center}
@@ -3044,7 +3044,7 @@ \section{Radiation inside a Box (\texorpdfstring{\ct{radiation_box}}{radiation\_
30443044
\includegraphics[height=2.2in]{SCRIPT_FIGURES/radiation_box_20} &
30453045
\includegraphics[height=2.2in]{SCRIPT_FIGURES/radiation_box_100}
30463046
\end{tabular*}
3047-
\caption{Incident heat flux.}\label{fig_incident_heat_flux}
3047+
\caption[Incident heat flux]{Incident heat flux.}\label{fig_incident_heat_flux}
30483048
\end{figure}
30493049

30503050
The results provide an illustration of numerical errors due to both angular resolution and spatial resolution. With 20$^3$ cells (5-cm spatial resolution), the discrepancies between the FDS and analytical solutions decrease when increasing the number of radiation angles used in the Radiation Transfer Equation (RTE) solver: this decrease may be explained by the increasingly accurate description of the angular region occupied by the hot wall when viewed from the selected opposite wall locations. The results also show that at 5-cm spatial resolution (20$^3$ cells), the discrepancies between the FDS and analytical solutions do not totally vanish and feature a residual error of approximately 10$\%$ even when using a large number of radiation angles: this residual error may be explained by inaccuracies in the numerical description of the configuration factors (configuration factors are defined as spatial integrals over the hot wall surface of an expression that features two cosine angles and a separation distance; the implicit evaluation of configuration factors in the RTE solver is subject to spatial integration errors). Consistent with this explanation, the results show that at 1-cm spatial resolution (100$^3$ cells), the discrepancies between the FDS and analytical solutions decrease to very small levels and feature a residual error of less than 1$\%$.

0 commit comments

Comments
 (0)