Skip to content

Commit 5083197

Browse files
authored
Merge pull request #15737 from cxp484/FireX
FireX: Merge with firemodels/master
2 parents 3c823ec + 117029d commit 5083197

31 files changed

+1837
-5636
lines changed

.github/workflows/cmake.yml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -252,7 +252,7 @@ jobs:
252252
# oneapi-ci/scripts/install_windows.bat
253253
- name: cache install oneapi
254254
id: cache-install
255-
uses: actions/cache@v4
255+
uses: actions/cache@v5
256256
with:
257257
path: C:\Program Files (x86)\Intel\oneAPI\
258258
key: install-${{ env.WINDOWS_BASEKIT_URL }}-${{ env.WINDOWS_BASEKIT_COMPONENTS }}-${{ env.WINDOWS_HPCKIT_URL }}-${{ env.WINDOWS_HPCKIT_COMPONENTS }}

.github/workflows/linux.yml

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -34,9 +34,9 @@ jobs:
3434
- uses: rscohn2/setup-oneapi@v0
3535
with:
3636
components: |
37-
ifx@2025.2.0
38-
impi@2021.16.0
39-
mkl@2025.2.0
37+
ifx@2025.3.0
38+
impi@2021.17.1
39+
mkl@2025.3.0
4040
prune: false
4141

4242
- uses: actions/checkout@v6

.github/workflows/windows.yml

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -26,9 +26,9 @@ permissions:
2626
env:
2727
# update urls for oneapi packages according to
2828
# https://github.com/oneapi-src/oneapi-ci/blob/master/.github/workflows/build_all.yml
29-
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/f5881e61-dcdc-40f1-9bd9-717081ac623c/intel-oneapi-base-toolkit-2025.2.1.46_offline.exe
29+
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/1f18901e-877d-469d-a41a-a10f11b39336/intel-oneapi-base-toolkit-2025.3.0.372_offline.exe
3030
WINDOWS_BASEKIT_COMPONENTS: intel.oneapi.win.mkl.devel
31-
WINDOWS_HPCKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/e63ac2b4-8a9a-4768-979a-399a8b6299de/intel-oneapi-hpc-toolkit-2025.2.1.46_offline.exe
31+
WINDOWS_HPCKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/3a871580-f839-46ed-aeae-685084127279/intel-oneapi-hpc-toolkit-2025.3.0.378_offline.exe
3232
WINDOWS_HPCKIT_COMPONENTS: intel.oneapi.win.ifort-compiler:intel.oneapi.win.mpi.devel
3333

3434

@@ -50,7 +50,7 @@ jobs:
5050
# oneapi-ci/scripts/install_windows.bat
5151
- name: cache install oneapi
5252
id: cache-install
53-
uses: actions/cache@v4
53+
uses: actions/cache@v5
5454
with:
5555
path: C:\Program Files (x86)\Intel\oneAPI\
5656
key: install-${{ env.WINDOWS_BASEKIT_URL }}-${{ env.WINDOWS_BASEKIT_COMPONENTS }}-${{ env.WINDOWS_HPCKIT_URL }}-${{ env.WINDOWS_HPCKIT_COMPONENTS }}

Build/makefile

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -298,14 +298,14 @@ impi_intel_linux_openmp : obj = fds_impi_intel_linux_openmp
298298
impi_intel_linux_openmp : setup $(obj_mpi)
299299
$(FCOMPL) $(FFLAGS) $(FOPENMPFLAGS) -o $(obj) $(obj_mpi) $(LFLAGSMKL)
300300

301-
impi_intel_linux_db : FFLAGS = -check all -warn all -diag-error=remark,warn,error -O0 -g -traceback -fpe0 -nofltconsistency -stand:f18 -no-wrap-margin $(GITINFO) $(FFLAGSMKL) $(FFLAGS_HYPRE) $(FFLAGS_SUNDIALS) $(FFLAGS_HDF5) -DUSE_IFPORT
301+
impi_intel_linux_db : FFLAGS = -check all -warn all -diag-error=remark,warn,error -O0 -g -traceback -fpe0 -nofltconsistency -stand f2023 -no-wrap-margin $(GITINFO) $(FFLAGSMKL) $(FFLAGS_HYPRE) $(FFLAGS_SUNDIALS) $(FFLAGS_HDF5) -DUSE_IFPORT
302302
impi_intel_linux_db : LFLAGSMKL = $(LFLAGSMKL_INTEL) $(LFLAGS_HYPRE) $(LFLAGS_SUNDIALS) $(LFLAGS_HDF5) $(LFLAGS_GPU)
303303
impi_intel_linux_db : FCOMPL = $(COMP_FC)
304304
impi_intel_linux_db : obj = fds_impi_intel_linux_db
305305
impi_intel_linux_db : setup $(obj_mpi)
306306
$(FCOMPL) $(FFLAGS) -o $(obj) $(obj_mpi) $(LFLAGSMKL)
307307

308-
impi_intel_linux_openmp_db : FFLAGS = -check all -warn all -diag-error=remark,warn,error -O0 -g -traceback -fpe0 -nofltconsistency -stand:f18 -no-wrap-margin $(GITINFO) $(FFLAGSMKL) $(FFLAGS_HYPRE) $(FFLAGS_SUNDIALS) $(FFLAGS_HDF5) -DUSE_IFPORT
308+
impi_intel_linux_openmp_db : FFLAGS = -check all -warn all -diag-error=remark,warn,error -O0 -g -traceback -fpe0 -nofltconsistency -stand f2023 -no-wrap-margin $(GITINFO) $(FFLAGSMKL) $(FFLAGS_HYPRE) $(FFLAGS_SUNDIALS) $(FFLAGS_HDF5) -DUSE_IFPORT
309309
impi_intel_linux_openmp_db : LFLAGSMKL = $(LFLAGSMKL_INTEL_OPENMP) $(LFLAGS_HYPRE) $(LFLAGS_SUNDIALS) $(LFLAGS_HDF5)
310310
impi_intel_linux_openmp_db : FCOMPL = $(COMP_FC)
311311
impi_intel_linux_openmp_db : FOPENMPFLAGS = -qopenmp

Manuals/Bibliography/FDS_general.bib

Lines changed: 23 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -6257,11 +6257,23 @@ @TECHREPORT{Sung:TN2019
62576257
}
62586258

62596259
@TECHREPORT{Sung:TN2021,
6260-
author = {K. Sung and A. Hamins},
6260+
author = {K. Sung and R. Falkenstein-Smith and A. Hamins},
62616261
title = {{Velocity and Temperature Structure of Medium-Scale Pool Fires}},
62626262
institution = {National Institute of Standards and Technology},
62636263
year = {2021},
6264-
number = {in preparation},
6264+
month = {June},
6265+
number = {2162},
6266+
type = {NIST Technical Note},
6267+
address = {Gaithersburg, Maryland}
6268+
}
6269+
6270+
@TECHREPORT{Sung:TN2162r1,
6271+
author = {K. Sung and R. Falkenstein-Smith and M. Bundy and M. Fernandez and A. Hamins},
6272+
title = {{The Global and Local Structure of Medium-Scale Pool Fires}},
6273+
institution = {National Institute of Standards and Technology},
6274+
year = {2024},
6275+
month = {October},
6276+
number = {2162r1},
62656277
type = {NIST Technical Note},
62666278
address = {Gaithersburg, Maryland}
62676279
}
@@ -7199,6 +7211,15 @@ @INPROCEEDINGS{Zukoski:IAFSS2
71997211
publisher = "Hemisphere Publishing Company",
72007212
}
72017213

7214+
@INBOOK{Zukoski:1995,
7215+
author = {E.E. Zukoski},
7216+
editor = {G. Cox},
7217+
title = {{Combustion Fundamentals of Fire}},
7218+
chapter = {{Properties of Fire Plumes}},
7219+
year = {1995},
7220+
publisher = {Academic Press, London}
7221+
}
7222+
72027223
@MISC{Colt:1,
72037224
title = {{Portsmouth Fire Test}},
72047225
howpublished = {Colt Heating and Ventilation. Internal Report},

Manuals/Copy_Firebot_Figures.sh

Lines changed: 3 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -55,14 +55,9 @@ echo Validation Guide Figures Copied
5555
# Copy Verification Results
5656
#rsync -v -r --include '*/' --include '*_git.txt' --include '*.csv' --include '*.err' --exclude '*' $FIREBOTVER/* $BASEDIR/../Verification/
5757
#$CP $FIREBOTVER/Miscellaneous/mesh_transformation.smv $BASEDIR/../Verification/Miscellaneous/.
58-
#$CP $FIREBOTVER/Sprinklers_and_Sprays/fluid_part_mom_x_1.prt5 $BASEDIR/../Verification/Sprinklers_and_Sprays/.
59-
#$CP $FIREBOTVER/Sprinklers_and_Sprays/fluid_part_mom_y_1.prt5 $BASEDIR/../Verification/Sprinklers_and_Sprays/.
60-
#$CP $FIREBOTVER/Sprinklers_and_Sprays/fluid_part_mom_z_1.prt5 $BASEDIR/../Verification/Sprinklers_and_Sprays/.
61-
#$CP $FIREBOTVER/Sprinklers_and_Sprays/terminal_velocity_dt_0_0001_1.prt5 $BASEDIR/../Verification/Sprinklers_and_Sprays/.
62-
#$CP $FIREBOTVER/Sprinklers_and_Sprays/terminal_velocity_dt_0_001_1.prt5 $BASEDIR/../Verification/Sprinklers_and_Sprays/.
63-
#$CP $FIREBOTVER/Sprinklers_and_Sprays/terminal_velocity_dt_0_01_1.prt5 $BASEDIR/../Verification/Sprinklers_and_Sprays/.
64-
#$CP $FIREBOTVER/Sprinklers_and_Sprays/terminal_velocity_dt_0_1_1.prt5 $BASEDIR/../Verification/Sprinklers_and_Sprays/.
65-
#$CP $FIREBOTVER/Sprinklers_and_Sprays/terminal_velocity_dt_1_0_1.prt5 $BASEDIR/../Verification/Sprinklers_and_Sprays/.
58+
#$CP $FIREBOTVER/Sprinklers_and_Sprays/fluid_part_mom*.prt5 $BASEDIR/../Verification/Sprinklers_and_Sprays/.
59+
#$CP $FIREBOTVER/Sprinklers_and_Sprays/terminal_velocity*.prt5 $BASEDIR/../Verification/Sprinklers_and_Sprays/.
60+
#$CP $FIREBOTVER/WUI/part_drag_prof*.prt5 $BASEDIR/../Verification/WUI/.
6661
#echo Verification Results Copied
6762

6863
# Copy Validation Results

Manuals/FDS_User_Guide/FDS_User_Guide.tex

Lines changed: 7 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -5645,10 +5645,12 @@ \subsection{Chemical Time Integration}
56455645
\item \ct{MIN_EQUIV_RATIO}=0.0
56465646
\item \ct{MAX_EQUIV_RATIO}=20.0
56475647
\item \ct{DO_CHEM_LOAD_BALANCE}=T
5648+
\item \ct{CVODE_ORDER}=0
56485649
\end{itemize}
56495650
The parameter \ct{FINITE_RATE_MIN_TEMP} defines the minimum temperature (in $^\circ$C) above which chemistry calculation will be performed. CVODE allows specification of relative and absolute tolerances at the species level using the \ct{ODE_REL_ERROR} and \ct{ODE_ABS_ERROR} parameters in the \ct{SPEC} input line. These tolerances can also be set globally in the \ct{COMB} input line, with species-level settings taking precedence. Currently, CVODE does not allow relative tolerance at the species level. The minimum concentration of a species is determined as the product of \ct{ODE_REL_ERROR} and \ct{ZZ_MIN_GLOBAL}. Concentrations below this threshold are treated as zero.
56505651

5651-
Additional optional parameters include \ct{EQUIV_RATIO_CHECK}, \ct{MIN_EQUIV_RATIO}, and \ct{MAX_EQUIV_RATIO}. When \ct{EQUIV_RATIO_CHECK} is enabled (set to true), the chemistry calculation is performed only for those cells for which equivalence ratio is within the specified \ct{MIN_EQUIV_RATIO} and \ct{MAX_EQUIV_RATIO} limits, reducing computational time. Enabling \ct{DO_CHEM_LOAD_BALANCE} significantly accelerates chemistry calculations by distributing the computational load evenly across all MPI processes.
5652+
Additional optional parameters include \ct{EQUIV_RATIO_CHECK}, \ct{MIN_EQUIV_RATIO}, and \ct{MAX_EQUIV_RATIO}. When \ct{EQUIV_RATIO_CHECK} is enabled (set to true), the chemistry calculation is performed only for those cells for which equivalence ratio is within the specified \ct{MIN_EQUIV_RATIO} and \ct{MAX_EQUIV_RATIO} limits, reducing computational time. Enabling \ct{DO_CHEM_LOAD_BALANCE} significantly accelerates chemistry calculations by distributing the computational load evenly across all MPI processes. The parameter \ct{CVODE_ORDER} controls the order of discretization when solving the ODE system. By default (0), CVODE dynamically selects an order between 1 and 5. For very stiff problems, the user may specify a lower order (1 or 2) to improve stability, at the cost of slower performance because CVODE will take much smaller internal substeps.
5653+
56525654
User can modify the default values of any or all of these parameters as needed using the following line in the FDS input file:
56535655
\begin{lstlisting}
56545656
&COMB
@@ -10571,14 +10573,14 @@ \subsection{Bi-Directional Probe}
1057110573
\label{info:bidir_probe}
1057210574
\label{bi_dir}
1057310575

10574-
The output quantity \ct{BI-DIRECTIONAL PROBE} is the velocity of a modeled bi-directional probe. A bi-directional probe uses the following equation:
10576+
The output quantity \ct{BI-DIRECTIONAL PROBE} is the velocity of a modeled bi-directional probe. A bi-directional probe uses the following equation~\cite{McCaffrey:1976}:
1057510577
\be
1057610578
C \sqrt{\frac{2 \Delta P}{\rho}}
1057710579
\label{BDP}
1057810580
\ee
1057910581
where $C$ is a calibration constant (default value is 0.93), $\Delta P$ is the pressure difference across the probe, and $\rho$ is the gas density at the probe. In a typical experiment, the gas density is computed assuming standard pressure (101325 Pa), the molecular weight of air (28.8 g/mol), and the temperature as measured by a thermocouple near the probe.
1058010582

10581-
Bi-directional probes have biases due to both the Reynolds number (based on the probe diameter) of the flow and the angle of the flow with respect to the probe axis~\cite{McCaffrey:1976}. At low Reynolds number a probe will measure a higher effective velocity. As the angle of the flow vector with the axis increases, the effective velocity at first increases up to an angle of 30$^\circ$ due to a low pressure region forming downstream of the probe, and then decreases reaching no measured flow at an angle of 90$^\circ$. This model accounts for these sensitivities and the impact of density differences from varied molecular weight at the probe. The orientation of the probe can be specified with either \ct{IOR} or \ct{ORIENTATION} on \ct{DEVC}. A probe with \ct{IOR}=-1 would have a positive velocity output when the flow is in the -x direction. Parameters for the probe can be specified with a \ct{PROP_ID} on the \ct {DEVC}. The calibration constant (default of 0.93) and the probe diameter (default of 0.0254 m) can be set respectively with \ct{CALIBRATION_CONSTANT} and \ct{PROBE_DIAMETER} on \ct{PROP}. If the probe temperature is an aspirated thermocouple or other measurement not sensitive to the radiative environment, then set \ct{TC=F} on \ct{PROP}. Thermocouple specific properties for a bi-directional probe, see Section~\ref{info:THERMOCOUPLE}, should be set with the same \ct{PROP} as for the probe.
10583+
Bi-directional probes have biases due to both the Reynolds number (based on the probe diameter) of the flow and the angle of the flow with respect to the probe axis~\cite{McCaffrey:1976}. At low Reynolds number a probe will measure a higher effective velocity. As the angle of the flow vector with the axis increases, the effective velocity at first increases up to an angle of 30$^\circ$ due to a low pressure region forming downstream of the probe, and then decreases reaching no measured flow at an angle of 90$^\circ$. This model accounts for these sensitivities and the impact of density differences from varied molecular weight at the probe. The orientation of the probe can be specified with either \ct{IOR} or \ct{ORIENTATION} on \ct{DEVC}. A probe with \ct{IOR}=-1 would have a positive velocity output when the flow is in the -x direction. Parameters for the probe can be specified with a \ct{PROP_ID} on the \ct {DEVC}. The calibration constant (default of 0.93) and the probe diameter (default of 0.0254 m) can be set respectively with \ct{CALIBRATION_CONSTANT} and \ct{PROBE_DIAMETER} on \ct{PROP}. If the probe temperature is an aspirated thermocouple or other measurement not sensitive to the radiative environment, then set \ct{TC=F} on \ct{PROP}. Thermocouple specific properties for a bi-directional probe, see Section~\ref{info:THERMOCOUPLE}, should be set with the same \ct{PROP} as for the probe. If a dynamic calibration constant based on the Reynolds number calibration in McCaffrey~\cite{McCaffrey:1976} was used set \ct{CALIBRATION_CONSTANT=-1}.
1058210584

1058310585
Figure~\ref{bi_dir_fig} shows the results of a bi-directional probe with varying angle to a 1~m/s flow and varying flow speed.
1058410586
\begin{figure}[ht]
@@ -11970,7 +11972,7 @@ \chapter{Alphabetical List of Input Parameters}
1197011972

1197111973
% ignore namelist/keyword combinations
1197211974
% ignorenamelistkw: /BNDF/DEBUG
11973-
% ignorenamelistkw: /COMB/CVODE_ORDER, /COMB/FUEL_ID_FOR_AFT, /COMB/USE_MIXED_ZN_AFT_TMP
11975+
% ignorenamelistkw: /COMB/FUEL_ID_FOR_AFT, /COMB/USE_MIXED_ZN_AFT_TMP
1197411976
% ignorenamelistkw: /DEVC/ELEM_ID, /DEVC/STATISTICS
1197511977
% ignorenamelistkw: /DUMP/MMS_TIMER, /DUMP/TURB_INIT_CLOCK, /DUMP/GET_CUTCELLS_VERBOSE, /DUMP/WRITE_CVODE_SUBSTEPS
1197611978
% ignorenamelistkw: /HVAC/DEBUG
@@ -12112,6 +12114,7 @@ \section{\texorpdfstring{{\tt COMB}}{COMB} (General Combustion Parameters)}
1211212114
\endhead
1211312115
\ct{CHECK_REALIZABILITY} & Logical & Section~\ref{info:chem_integration} & & \ct{F} \\ \hline
1211412116
\ct{COMPUTE_ADIABATIC_FLAME_TEMPERATURE} & Logical & Section~\ref{info:extinction} & & \ct{F} \\ \hline
12117+
\ct{CVODE_ORDER} & Integer & Section~\ref{info:chem_integration} & & 0 \\ \hline
1211512118
\ct{DO_CHEM_LOAD_BALANCE} & Logical & Section~\ref{info:chem_integration} & & \ct{F} \\ \hline
1211612119
\ct{EQUIV_RATIO_CHECK} & Logical & Section~\ref{info:chem_integration} & & \ct{T} \\ \hline
1211712120
\ct{EXTINCTION_MODEL} & Character & Section~\ref{info:extinction} & & \\ \hline

Manuals/FDS_Validation_Guide/Experiment_Chapter.tex

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -52,7 +52,7 @@ \section{ATF Corridors Experiments}
5252
\section{Atmospheric Dispersion Correlations}
5353
\label{Atmospheric_Dispersion_Description}
5454

55-
A common exercise in atmospheric dispersion modeling is predicting the plume rise height of stack emissions. Stull~\cite{Stull:2000} presents an empirical correlation for plume rise height from a smoke stack in a stable atmospheric boundary layer. Details of the correlation and simulation are found in Sec.~\ref{Plume_Height_Discussion}.
55+
A common exercise in atmospheric dispersion modeling is predicting the plume rise height of stack emissions. Stull~\cite{Stull:2000} presents an empirical correlation for plume rise height from a smoke stack in a stable atmospheric boundary layer. Details of the correlation and simulation are found in Sec.~\ref{Plume Height}.
5656

5757

5858

@@ -2148,24 +2148,24 @@ \section{NIST Polymers}
21482148
\section{NIST Pool Fire Experiments}
21492149
\label{NIST_Pool_Fires_Description}
21502150

2151-
The NIST Pool Fire Experiments include temperature, species concentration, velocity, and heat flux measurements of 30~cm and 100~cm diameter circular liquid fuel fires, and 37~cm gaseous burner fires.
2151+
The NIST Pool Fire Experiments include temperature, species concentration, velocity, and heat flux measurements of 30~cm and 100~cm diameter circular liquid fuel fires, and 37~cm gaseous burner fires. The 30~cm and 37~cm fires are documented in Ref.~\cite{Sung:TN2162r1}.
21522152

21532153
The 30~cm burner is 15~cm deep and has a wall thickness of 1.6~mm. The burner is fitted with legs such that the burner rim is positioned 30~cm above the floor. The bottom of the burner is maintained at a constant temperature by flowing tap water (nominally 20~$^\circ$C) through a 3~cm section on the bottom of the fuel pan. The dimensions of the circular burner are similar to Weckman's methanol experiment described in Sec.~\ref{Waterloo_Methanol_Description}.
21542154

2155-
The 100~cm burner is also 15~cm deep, has a wall thickness of 1.6~mm, and is water-cooled.
2155+
The 37~cm burner is actually 38~cm in diameter with an effective diameter of 37~cm. It is water cooled, and the surface temperature is maintained at approximately 40~$^\circ$C. The measured fuel flow rate for the methane fire was 0.69~g/s and its estimated HRR was 34.5~kW. The heat release rates of the three propane fires were 20~kW, 34~kW, and 50~kW.
21562156

2157-
The 37~cm burner is actually 38~cm in diameter with an effective diameter of 37~cm. It is water cooled, and the surface temperature is maintained at approximately 40~$^\circ$C. The measured fuel flow rate for the methane fire was 0.69~g/s and its estimated HRR was 34.5~kW. The heat release rates of the two propane fires were 20~kW and 34~kW.
2157+
The 100~cm burner is also 15~cm deep, has a wall thickness of 1.6~mm, and is water-cooled.
21582158

21592159
Details and references with regard to the plume temperature measurements are given in Sec.~\ref{NIST_Pool_Fires_Plume_Temps}. Details on the heat flux measurements are given in Sec.~\ref{NIST_Pool_Fires_Heat_Flux_Results}. Details on the gas species measurements is given in Sec.~\ref{sec:NIST_Pool_Fires}. Details on the velocity measurements is given in Sec.~\ref{NIST_Pool_Fires_Velocity}.
21602160

21612161

21622162
\subsubsection{Modeling Notes}
21632163

2164-
The 30~cm pool fires are modeled at three different grid resolutions---2~cm, 1~cm, and 0.5~cm. The 100~cm pool fires are modeled at 4~cm, 2~cm, and 1~cm resolution. The mass loss rate of the fuel is specified.
2164+
The 30~cm and 37~cm fires are modeled at three different grid resolutions---2~cm, 1~cm, and 0.5~cm. The 100~cm methanol pool fire is modeled at 4~cm, 2~cm, and 1~cm resolution. The mass loss rate of the fuel is specified for the 30~cm and 37~cm fires, and both predicted and specified for the 100~cm fire.
21652165

21662166
A two-step reaction mechanism is implemented. In the first reaction, fuel is converted to CO, soot, H$_2$, and H$_2$O. In the second reaction, the CO, soot, and H$_2$ are converted to CO$_2$ and H$_2$O. Both reactions employ fast kinetics, but proceed in series, not in parallel. The relative amounts of CO, soot, and H$_2$ produced in the first step are still subjects of study, and for the moment have been estimated based on measured results. The fractions of carbon atoms converted to CO in the first step are as follows---0.85 for acetone; 0.95 for ethanol; 0.97 for methane; 1.0 for methanol; 0.85 for propane. For all fuels, one half of the hydrogen atoms are converted to H$_2$ in the first step.
21672167

2168-
The radiative fractions are specified based on measured values---0.31 for acetone; 0.26 for ethanol; 0.15 for methane; 0.21 for 1~m methanol; 0.22 for 30~cm methanol; 0.22 for propane.
2168+
The radiative fractions are specified based on reported values from Ref.~\cite{Sung:TN2162r1}---0.31 for acetone; 0.26 for ethanol; 0.35 for heptane; 0.21 for methane; 0.21 for 1~m methanol; 0.23 for 30~cm methanol; 0.23, 0.30, and 0.33 for the 20~kW, 34~kW, and 50~kW propane fires, respectively.
21692169

21702170

21712171
\section{NIST Smoke Alarm Experiments}

0 commit comments

Comments
 (0)