@@ -846,22 +846,22 @@ \chapter{Analytical Jacobian Calculation for Detailed Chemical Mechanism}
846846
847847The system of ODEs to solve a detailed chemical mechanism is given by Eqs.~(\ref {eq:chemistry_ode_system }) and (\ref {eq:TemperatureDerivative })
848848\begin {equation }\label {eq:chemistry_ode_system_appendix }
849- \frac {\d C_k}{\d t} = \dot {\omega }_k = \sum _{i=1}^{N_{\text { r}}} b_i \ \nu _{ki} \ r_i, j=1,2,3,...,N_{\text {s} }
849+ \frac {\d C_k}{\d t} = \dot {\omega }_k = \sum _{i=1}^{N_{\rm r}} b_i \ \nu _{ki} \ r_i, j=1,2,3,...,N_{\rm s }
850850\end {equation }
851851\begin {equation }\label {eq:TemperatureDerivativeAppendix }
852- \frac {\d T}{\d t} = \dot {T} = -\frac {1}{\rho c_p} \sum _{j=1}^{N_{\text { s}}} h_j W_j \dot {\omega }_j
852+ \frac {\d T}{\d t} = \dot {T} = -\frac {1}{\rho c_p} \sum _{j=1}^{N_{\rm s}}h_j W_j \dot {\omega }_j
853853\end {equation }
854854For Eq.~(\ref {eq:chemistry_ode_system_appendix }), $ C_j$ is the molar concentration \si {(kmol/m^3)} of the $ j$ th species; $ b_i$ is the reaction rate modification coefficient of the $ i$ th reaction due to third-body effects and pressure; $ \nu _{ki} = {\nu }_{ki}^{''} - {\nu }_{ki}^{'}$ ; and $ r_i$ is the reaction progress rate of the $ i$ th reaction.
855855\begin {equation }\label {eq:reaction_progress_rate_appendix }
856- r_i = k_{f,i} \prod _{j=1}^{N_{\text { s}}} (C_j)^{{\nu }_{ji}^{'}} - k_{r,i} \prod _{j=1}^{N_{\text {s} }} (C_j)^{{\nu }_{ji}^{''}}
856+ r_i = k_{f,i} \prod _{j=1}^{N_{\rm s}} (C_j)^{{\nu }_{ji}^{'}} - k_{r,i} \prod _{j=1}^{N_{\rm s }} (C_j)^{{\nu }_{ji}^{''}}
857857\end {equation }
858858For Eq.~(\ref {eq:TemperatureDerivativeAppendix }), $ \rho $ is the density \si {(kg/m^3)}, $ c_p$ is the specific heat of the mixture (J/kg/K), $ h_k$ is the absolute enthalpy that includes enthalpy of formation (J/kg), $ W_j$ is the molecular weight (kg/kmol) of species $ j$ , and $ \dot {\omega }$ is the species production rate given by Eq.~(\ref {eq:chemistry_ode_system_appendix }).
859859
860860The system of ODEs can be represented by:
861861\be
862862\begin {aligned }
863- f &= \left [ \frac {\d C_1}{\d t} \ \frac {\d C_2}{\d t} \ldots \ \frac {\d C_{N_{\text {s} }}}{\d t} \ \frac {\d T}{\d t} \right ]^T \
864- &= \left [ \dot {\omega }_1 \ \dot {\omega }_2 \ldots \ \dot {\omega }_{N_{\text {s} }} \ \dot {T} \right ]^T \
863+ f &= \left [ \frac {\d C_1}{\d t} \ \frac {\d C_2}{\d t} \ldots \ \frac {\d C_{N_{\rm s }}}{\d t} \ \frac {\d T}{\d t} \right ]^T \
864+ &= \left [ \dot {\omega }_1 \ \dot {\omega }_2 \ldots \ \dot {\omega }_{N_{\rm s }} \ \dot {T} \right ]^T \
865865\end {aligned }
866866\ee
867867
@@ -870,12 +870,12 @@ \chapter{Analytical Jacobian Calculation for Detailed Chemical Mechanism}
870870\begin {aligned }
871871J &=
872872\begin {bmatrix }
873- \frac {\partial\dot {\omega }_1}{\partial C_1}& \frac {\partial \dot {\omega }_2}{\partial C_1} & \ldots & \frac {\partial \dot {\omega }_{N_{\text {s} }}}{\partial C_1} & | & \frac {\partial \dot {T}}{\partial C_1}\\
874- \frac {\partial\dot {\omega }_1}{\partial C_2}& \frac {\partial \dot {\omega }_2}{\partial C_2} & \ldots & \frac {\partial \dot {\omega }_{N_{\text {s} }}}{\partial C_2} & | &\frac {\partial \dot {T}}{\partial C_2}\\
873+ \frac {\partial\dot {\omega }_1}{\partial C_1}& \frac {\partial \dot {\omega }_2}{\partial C_1} & \ldots & \frac {\partial \dot {\omega }_{N_{\rm s }}}{\partial C_1} & | & \frac {\partial \dot {T}}{\partial C_1}\\
874+ \frac {\partial\dot {\omega }_1}{\partial C_2}& \frac {\partial \dot {\omega }_2}{\partial C_2} & \ldots & \frac {\partial \dot {\omega }_{N_{\rm s }}}{\partial C_2} & | &\frac {\partial \dot {T}}{\partial C_2}\\
875875\ldots & \ldots & \ldots & \ldots & | & \ldots \\
876- \frac {\partial \dot {\omega }_1}{\partial C_{N_{\text { s}}}} & \frac {\partial \dot {\omega }_2}{\partial C_{N_{\text { s}}}} & \ldots & \frac {\partial \dot {\omega }_{N_{\text { s}}}} {\partial C_{N_{\text { s}}}} & | & \frac {\partial \dot {T}}{\partial C_{N_{\text {s} }}}\\
876+ \frac {\partial \dot {\omega }_1}{\partial C_{N_{\rm s}}}& \frac {\partial \dot {\omega }_2}{\partial C_{N_{\rm s}}} & \ldots & \frac {\partial \dot {\omega }_{N_{\rm s}}}{\partial C_{N_{\rm s}}} & | & \frac {\partial \dot {T}}{\partial C_{N_{\rm s }}}\\
877877---& --- & --- & --- & | & ---\\
878- \frac {\partial \dot {\omega }_1}{\partial T}& \frac {\partial \dot {\omega }_2}{\partial T} & \ldots & \frac {\partial \dot {\omega }_{N_{\text {s} }}}{\partial T} & | & \frac {\partial \dot {T}}{\partial T}\\
878+ \frac {\partial \dot {\omega }_1}{\partial T}& \frac {\partial \dot {\omega }_2}{\partial T} & \ldots & \frac {\partial \dot {\omega }_{N_{\rm s }}}{\partial T} & | & \frac {\partial \dot {T}}{\partial T}\\
879879\end {bmatrix }
880880&=\begin {bmatrix }
881881\frac {\partial \mathbf {\dot {\omega }}}{\mathbf {\partial C}}& \frac {\partial \dot {T}}{\partial \mathbf {C}}\\
@@ -888,16 +888,16 @@ \subsection*{Calculation of $\frac{\partial \mathbf{\dot{\omega}}}{\mathbf{\part
888888By taking derivative of Eq.~(\ref {eq:chemistry_ode_system_appendix }) with respect to concentration, we can write:
889889\begin {equation }\label {eq:Jac1st }
890890\begin {aligned }
891- \frac {\partial \dot {\omega }_k}{\partial C_l} &= \sum _{i=1}^{N_{reac}} \left [ \nu _{ki} \ r_i \ \frac {\partial b_i}{\partial C_l} + b_i \nu _{ki} \ \left ( k_{f,i} \nu _{li}^{'} \ \frac {\prod _{j=1}^{N_{\text { s}}} (C_j)^{{\nu }_{ji}^{'}} }{C_l} - k_{r,i} \ \nu _{li}^{''} \ \frac {\prod _{j=1}^{N_{\text {s} }} (C_j)^{{\nu }_{ji}^{''}} }{C_l} \right ) \right ],
891+ \frac {\partial \dot {\omega }_k}{\partial C_l} &= \sum _{i=1}^{N_{reac}} \left [ \nu _{ki} \ r_i \ \frac {\partial b_i}{\partial C_l} + b_i \nu _{ki} \ \left ( k_{f,i} \nu _{li}^{'} \ \frac {\prod _{j=1}^{N_{\rm s}} (C_j)^{{\nu }_{ji}^{'}} }{C_l} - k_{r,i} \ \nu _{li}^{''} \ \frac {\prod _{j=1}^{N_{\rm s }} (C_j)^{{\nu }_{ji}^{''}} }{C_l} \right ) \right ],
892892\end {aligned }
893893\end {equation }
894894Here, the $ \frac {\partial b_i}{\partial C_l}$ term can be calculated using Eqs.~(\ref {eq:reac_mod_coeff })-(\ref {eq:falloff_Fi }).
895895
896896\subsection* {Calculation of $ \frac {\partial \mathbf {\dot {\omega }}}{\partial T}$ }
897897By taking derivative of Eq.~(\ref {eq:chemistry_ode_system_appendix }) with respect to temperature, we can write:
898898\begin {multline }\label {eq:Jac2nd }
899- \frac {\partial \dot {\omega }_k}{\partial T} = \sum _{i=1}^{N_{reac}} \left [ \nu _{ki} \ r_i \ \frac {\partial b_i}{\partial T} + b_i \nu _{ki} \ \left \{ \frac {\partial k_{f,i}}{\partial T} \prod _{j=1}^{N_{\text { s}}} (C_j)^{{\nu }_{ji}^{'}} + k_{f,i} \frac {\partial }{\partial T} \left ( \prod _{j=1}^{N_{\text {s} }} (C_j)^{{\nu }_{ji}^{'}} \right ) \right . \right . \\
900- - \left . \left . \frac {\partial k_{r,i}}{\partial T} \prod _{j=1}^{N_{\text { s}}} (C_j)^{{\nu }_{ji}^{''}} - k_{r,i} \frac {\partial }{\partial T} \left ( \prod _{j=1}^{N_{\text {s} }} (C_j)^{{\nu }_{ji}^{''}} \right ) \right \} \right ]
899+ \frac {\partial \dot {\omega }_k}{\partial T} = \sum _{i=1}^{N_{reac}} \left [ \nu _{ki} \ r_i \ \frac {\partial b_i}{\partial T} + b_i \nu _{ki} \ \left \{ \frac {\partial k_{f,i}}{\partial T} \prod _{j=1}^{N_{\rm s}} (C_j)^{{\nu }_{ji}^{'}} + k_{f,i} \frac {\partial }{\partial T} \left ( \prod _{j=1}^{N_{\rm s }} (C_j)^{{\nu }_{ji}^{'}} \right ) \right . \right . \\
900+ - \left . \left . \frac {\partial k_{r,i}}{\partial T} \prod _{j=1}^{N_{\rm s}} (C_j)^{{\nu }_{ji}^{''}} - k_{r,i} \frac {\partial }{\partial T} \left ( \prod _{j=1}^{N_{\rm s }} (C_j)^{{\nu }_{ji}^{''}} \right ) \right \} \right ]
901901\end {multline }
902902Similar to $ \frac {\partial b_i}{\partial C_l}$ , $ \frac {\partial b_i}{\partial T}$ can be calculated using Eqs.~(\ref {eq:reac_mod_coeff })-(\ref {eq:falloff_Fi }).
903903\begin {equation } \label {eq:kfTmpDerivative }
@@ -912,14 +912,14 @@ \subsection*{Calculation of $\frac{\partial \mathbf{\dot{\omega}}}{\partial T}$}
912912Here, $ K_i$ is the concentration equilibrium constant obtained using Eq.~(\ref {eq:equilibrium_const }). Through mathematical derivation, it can be shown that:
913913\begin {equation }\label {eq:EqConstTmpDerivative }
914914\begin {aligned }
915- \frac {1}{K_i} \frac {\partial K_i}{\partial T} = -\frac {1}{T} \left ( \sum _{i=1}^{N_{\text { s}}} {\nu }_{ji}^{''} - \sum _{i=1}^{N_{\text { s}}} {\nu }_{ji}^{'} \right ) + \frac {1}{R T} \left ( \frac {\Delta G_{\mathrm {rxn}}}{T} + \Delta S_{\mathrm {rxn}} \right )
915+ \frac {1}{K_i} \frac {\partial K_i}{\partial T} = -\frac {1}{T} \left ( \sum _{i=1}^{N_{\rm s}} {\nu }_{ji}^{''} - \sum _{i=1}^{N_{\rm s}} {\nu }_{ji}^{'} \right ) + \frac {1}{R T} \left ( \frac {\Delta G_{\mathrm {rxn}}}{T} + \Delta S_{\mathrm {rxn}} \right )
916916\end {aligned }
917917\end {equation }
918918Here, $ \Delta S_{\mathrm {rxn}}$ is the change in entropy, and can be calculated similar to the process described in Section \ref {sec:equilChem }.
919919\begin {equation }\label {eq:ConcTmpDerivative }
920920\begin {aligned }
921- \frac {\partial }{\partial T} \left ( \prod _{j=1}^{N_{\text { s}}} (C_j)^{{\nu }_{ji}^{'}} \right ) &= - \frac {1}{T} \left ( \sum _{j=1}^{N_{\text { s}}} {\nu }_{ji}^{'} \right ) \left ( \prod _{j=1}^{N_{\text {s} }} (C_j)^{{\nu }_{ji}^{'}} \right ) \\
922- \frac {\partial }{\partial T} \left ( \prod _{j=1}^{N_{\text { s}}} (C_j)^{{\nu }_{ji}^{''}} \right ) &= - \frac {1}{T} \left ( \sum _{j=1}^{N_{\text { s}}} {\nu }_{ji}^{''} \right ) \left ( \prod _{j=1}^{N_{\text {s} }} (C_j)^{{\nu }_{ji}^{''}} \right ){}
921+ \frac {\partial }{\partial T} \left ( \prod _{j=1}^{N_{\rm s}} (C_j)^{{\nu }_{ji}^{'}} \right ) &= - \frac {1}{T} \left ( \sum _{j=1}^{N_{\rm s}} {\nu }_{ji}^{'} \right ) \left ( \prod _{j=1}^{N_{\rm s }} (C_j)^{{\nu }_{ji}^{'}} \right ) \\
922+ \frac {\partial }{\partial T} \left ( \prod _{j=1}^{N_{\rm s}} (C_j)^{{\nu }_{ji}^{''}} \right ) &= - \frac {1}{T} \left ( \sum _{j=1}^{N_{\rm s}} {\nu }_{ji}^{''} \right ) \left ( \prod _{j=1}^{N_{\rm s }} (C_j)^{{\nu }_{ji}^{''}} \right ){}
923923\end {aligned }
924924\end {equation }
925925In the above derivation, the relation $ \frac {\partial C_j}{\partial T} = - \frac {C_j}{T}$ is used.
@@ -930,22 +930,22 @@ \subsection*{Calculation of $\frac{\partial \dot{T}}{\partial \mathbf{C}}$}
930930By taking derivative of Eq.~(\ref {eq:TemperatureDerivativeAppendix }) with respect to concentration, we can write:
931931\begin {equation } \label {eq:Jac3rd }
932932\begin {aligned }
933- \frac {\partial \dot {T}}{\partial C_l} &= \frac {\partial }{\partial C_l} \left ( -\frac {1}{\rho c_p} \sum _{j=1}^{N_{\text {s} }}h_j W_j \dot {\omega }_j \right ) \\
934- &= -\left ( \frac {1}{\rho } \frac {\partial \rho }{\partial C_l} + \frac {1}{c_p} \frac {\partial c_p}{\partial C_l} \right ) \dot {T} - \frac {1}{{\rho } c_p} \sum _{j=1}^{N_{\text { s}}} h_j W_j \frac {\partial \dot {\omega }_j}{\partial C_l}
933+ \frac {\partial \dot {T}}{\partial C_l} &= \frac {\partial }{\partial C_l} \left ( -\frac {1}{\rho c_p} \sum _{j=1}^{N_{\rm s }}h_j W_j \dot {\omega }_j \right ) \\
934+ &= -\left ( \frac {1}{\rho } \frac {\partial \rho }{\partial C_l} + \frac {1}{c_p} \frac {\partial c_p}{\partial C_l} \right ) \dot {T} - \frac {1}{{\rho } c_p} \sum _{j=1}^{N_{\rm s}}h_j W_j \frac {\partial \dot {\omega }_j}{\partial C_l}
935935\end {aligned }
936936\end {equation }
937937Using the relations $ \frac {\partial \rho }{\partial C_l} = W_l$ and $ \frac {\partial c_p}{\partial C_l} = - \frac {W_l}{\rho }\left ( c_p -c_{p,l} \right )$ , we can rewrite Eq. ~(\ref {eq:Jac3rd }) as:
938938\begin {equation } \label {eq:Jac3rd_final }
939- \frac {\partial \dot {T}}{\partial C_l} = \frac {W_l c_{p,l}}{\rho c_p} \dot {T} - \frac {1}{{\rho } c_p} \sum _{j=1}^{N_{\text { s}}} h_j W_j \frac {\partial \dot {\omega }_j}{\partial C_l}
939+ \frac {\partial \dot {T}}{\partial C_l} = \frac {W_l c_{p,l}}{\rho c_p} \dot {T} - \frac {1}{{\rho } c_p} \sum _{j=1}^{N_{\rm s}}h_j W_j \frac {\partial \dot {\omega }_j}{\partial C_l}
940940\end {equation }
941941Here, $ c_{p,l}$ is the specific heat of species $ l$ . The last term Eq.~(\ref {eq:Jac3rd_final }) can be obtained using Eq. \ref {eq:Jac1st }.
942942
943943\subsection* {Calculation of $ \frac {\partial \dot {T}}{\partial T}$ }
944944By taking derivative of Eq.~(\ref {eq:TemperatureDerivativeAppendix }) with respect to temperature, we can write:
945945\begin {equation } \label {eq:Jac4th }
946946\begin {aligned }
947- \frac {\partial \dot {T}}{\partial T} &= \frac {\partial }{\partial T} \left ( -\frac {1}{\rho c_p} \sum _{j=1}^{N_{\text {s} }}h_j W_j \dot {\omega }_j \right ) \\
948- &=\frac {\dot {T}}{T} - \frac {1}{c_p} \frac {\partial c_p}{\partial T} \dot {T} - \frac {1}{\rho c_p} \sum _{j=1}^{N_{\text { s}}} \left [ h_j \frac {\partial \dot {\omega }_j}{\partial T} + \dot {\omega }_j c_{p,j} \right ] W_j
947+ \frac {\partial \dot {T}}{\partial T} &= \frac {\partial }{\partial T} \left ( -\frac {1}{\rho c_p} \sum _{j=1}^{N_{\rm s }}h_j W_j \dot {\omega }_j \right ) \\
948+ &=\frac {\dot {T}}{T} - \frac {1}{c_p} \frac {\partial c_p}{\partial T} \dot {T} - \frac {1}{\rho c_p} \sum _{j=1}^{N_{\rm s}} \left [ h_j \frac {\partial \dot {\omega }_j}{\partial T} + \dot {\omega }_j c_{p,j} \right ] W_j
949949\end {aligned }
950950\end {equation }
951951To derive the above equation, the relations $ \frac {\partial \rho }{\partial T} = -\frac {\rho }{T}$ and $ \frac {\partial h_j}{\partial T} = c_{p,j}$ are used. The term $ \frac {\partial \dot {\omega }_j}{\partial T}$ can be obtained using Eq.~(\ref {eq:Jac2nd }).
0 commit comments