Skip to content

Commit 889785b

Browse files
committed
FDS Verification: Add bi-dir verification case.
1 parent 50ffe94 commit 889785b

File tree

6 files changed

+63
-2
lines changed

6 files changed

+63
-2
lines changed

Manuals/Bibliography/FDS_general.bib

Lines changed: 11 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -4068,6 +4068,17 @@ @ARTICLE{Mawhinney:FT2012
40684068
year = {2012}
40694069
}
40704070

4071+
@ARTICLE{McCaffrey:1976,
4072+
author = {B.J. McCaffrey and G. Heskestad},
4073+
title = {{A Robust Bidirectional Low-Velocity Probe
4074+
for Flame and Fire Application}},
4075+
journal = {Combustion and Flame},
4076+
volume = {26},
4077+
number = {},
4078+
pages = {125-127},
4079+
year = {1976},
4080+
}
4081+
40714082
@TECHREPORT{McCaffrey:NBSIR_79-1910,
40724083
author = {McCaffrey, B.J.},
40734084
title = {{Purely Buoyant Diffusion Flames: Some Experimental Results}},

Manuals/FDS_User_Guide/FDS_User_Guide.tex

Lines changed: 13 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -10550,7 +10550,7 @@ \subsection{Thermocouples}
1055010550
\tau = \frac{D_{\rm eff} \, \rho_{\rm eff} \, c_{\rm eff} }{6 \, h} \quad ; \quad h=\frac{k \, \NU}{D_{\rm eff}} \quad ; \quad \NU = 2 + 0.6 \, \RE^{1/2} \, \PR^{1/3} \quad ; \quad
1055110551
\RE = \frac{\rho \|\bu\| D_{\rm eff}}{\mu} \label{TC_tau}
1055210552
\ee
10553-
For a given value of the time constant, $\tau$, and effective thermal properties, Eq.~(\ref{TC_tau}) can be solved implicitly for the effective diameter. The \ct{TIME_CONSTANT} is specified on a \ct{PROP} line which is identified by the \ct{DEVC} line using a \ct{PROP_ID}. If you specify the \ct{TIME_CONSTANT}, you can still specify the effective \ct{EMISSIVITY}, \ct{DENSITY}, \ct{SPECIFIC_HEAT}, and \ct{HEAT_TRANSFER_COEFFICIENT} as well, but not the \ct{DIAMETER} because this will be calculated automatically. In most cases, it is sufficient to simply specify the \ct{TIME_CONSTANT}.
10553+
For a given value of the time constant, $\tau$, and effective thermal properties, Eq.~(\ref{TC_tau}) can be solved implicitly for the effective diameter. The \ct{TIME_CONSTANT} is specified on a \ct{PROP} line which is identified by the \ct{DEVC} line using a \ct{PROP_ID}. If you specify the \ct{TIME_CONSTANT}, you can still specify the effective \ct{EMISSIVITY}, \ct{DENSITY}, \ct{SPECIFIC_HEAT} (or \ct{SPECIFIC_HEAT_RAMP}), and \ct{HEAT_TRANSFER_COEFFICIENT} as well, but not the \ct{DIAMETER} because this will be calculated automatically. In most cases, it is sufficient to simply specify the \ct{TIME_CONSTANT}.
1055410554

1055510555
Figure~\ref{fig:thermocouple_time_constant} shows the results of a simple test case called \ct{thermocouple_time_constant} whose input file is in the \ct{Heat_Transfer} samples folder. Three thermocouples with given time constants of 0.5~s, 3.0~s, and 8.0~s are suddenly subjected to a 20~m/s air stream of 30~$^\circ$C. It is expected that each TC should reach a temperature of 26.32~$^\circ$C at their given time constants.
1055610556
\begin{figure}[!ht]
@@ -10562,13 +10562,24 @@ \subsection{Thermocouples}
1056210562

1056310563
\subsection{Bi-Directional Probe}
1056410564
\label{info:bidir_probe}
10565+
\label{bi_dir}
1056510566

1056610567
The output quantity \ct{BI-DIRECTIONAL PROBE} is the velocity of a modeled bi-directional probe. A bi-directional probe uses the following equation:
1056710568
\be
1056810569
C \sqrt{\frac{2 \Delta P}{\rho}}
1056910570
\label{BDP}
1057010571
\ee
10571-
where $C$ is a calibration constant (default value is 0.93), $\Delta P$ is the pressure difference across the probe, and $\rho$ is the gas density at the probe. In a typical experiment, the gas density is computed assuming standard pressure (101325 Pa), the molecular weight of air (28.8 g/mol), and the temperature as measured by a thermocouple near the probe. Bi-directional probes have biases due to both the Reynolds number (based on the probe diameter) of the flow and the angle of the flow with respect to the probe axis. This model accounts for those sensitivities and the impact of density differences from varied molecular weight at the probe. The orientation of the probe can be specified with either \ct{IOR} or \ct{ORIENTATION} on \ct{DEVC}. A probe with \ct{IOR}=-1 would have a positive velocity output when the flow is in the negative x direction. Parameters for the probe can be specified with a \ct{PROP_ID} on the \ct {DEVC}. The calibration constant and the probe diameter (default of 0.0254 m) can be set respectively with \ct{CALIBRATION_CONSTANT} and \ct{PROBE_DIAMETER} on \ct{PROP}. If the probe temperature is an aspirated thermocouple or other measurement not sensitive to the radiative environment, then set \ct{TC=F} on \ct{PROP}.
10572+
where $C$ is a calibration constant (default value is 0.93), $\Delta P$ is the pressure difference across the probe, and $\rho$ is the gas density at the probe. In a typical experiment, the gas density is computed assuming standard pressure (101325 Pa), the molecular weight of air (28.8 g/mol), and the temperature as measured by a thermocouple near the probe.
10573+
10574+
Bi-directional probes have biases due to both the Reynolds number (based on the probe diameter) of the flow and the angle of the flow with respect to the probe axis~\cite{McCaffrey:1976}. At low Reynolds number a probe will measure a higher effective velocity. As the angle of the flow vector with the axis increases, the effective velocity at first increases up to an angle of 30$^\circ$ due to a low pressure region forming downstream of the probe, and then decreases reaching no measured flow at an angle of 90$^\circ$. This model accounts for these sensitivities and the impact of density differences from varied molecular weight at the probe. The orientation of the probe can be specified with either \ct{IOR} or \ct{ORIENTATION} on \ct{DEVC}. A probe with \ct{IOR}=-1 would have a positive velocity output when the flow is in the -x direction. Parameters for the probe can be specified with a \ct{PROP_ID} on the \ct {DEVC}. The calibration constant (default of 0.93) and the probe diameter (default of 0.0254 m) can be set respectively with \ct{CALIBRATION_CONSTANT} and \ct{PROBE_DIAMETER} on \ct{PROP}. If the probe temperature is an aspirated thermocouple or other measurement not sensitive to the radiative environment, then set \ct{TC=F} on \ct{PROP}. Thermocouple specific properties for a bi-directional probe, see Section~\ref{info:THERMOCOUPLE}, should be set with the same \ct{PROP} as for the probe.
10575+
10576+
Figure~\ref{bi_dir_fig} shows the results of a bi-directional probe with varying angle to a 1~m/s flow and varying flow speed.
10577+
\begin{figure}[ht]
10578+
\includegraphics[width=3in]{SCRIPT_FIGURES/bi_dir}
10579+
\includegraphics[width=3in]{SCRIPT_FIGURES/bi_dir_2}
10580+
\caption[Results of the \ct{bi_dir} test case]{Measured velocities using a bi-directional probe. (Left) Varying angle for a 1~m/s flow. (Right) Probe axis aligned flow with varied flow speed.}
10581+
\label{bi_dir_fig}
10582+
\end{figure}
1057210583

1057310584
\subsection{Volume Flow}
1057410585
\label{info:volume_flow}

Utilities/Matlab/FDS_verification_dataplot_inputs.csv

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -36,6 +36,8 @@ d,back_wall_test_2,Heat_Transfer/back_wall_test_2_git.txt,Heat_Transfer/back_wal
3636
d,back_wall_test_2,Heat_Transfer/back_wall_test_2_git.txt,Heat_Transfer/back_wall_test_2_devc.csv,2,3,Time,T_F_Target|T_B_Target,Exact Front|Exact Back,ko|ro,0,100000,,0,100000,-1.00E+09,1.00E+09,0,Heat_Transfer/back_wall_test_2_devc.csv,2,3,Time,T_F3|T_B3,FDS Front|FDS Back,k-|r-,0,100000,,0,100000,-1.00E+09,1.00E+09,0,Rotated GEOM Surface Temp. (back\_wall\_test\_2),Time (s),Temperature (°C),0,20,1,0,1000,1,no,0.05 0.90,SouthEast,,1,linear,FDS_Verification_Guide/SCRIPT_FIGURES/back_wall_test_2_temp_geom_rotated,Relative Error,end,0.02,Heat Transfer,r^,r,TeX
3737
d,beam_detector,Detectors/beam_detector_git.txt,Detectors/beam_detector.csv,1,2,Time,Obs|Obs|Obs,Exact|Exact|Exact,k-|k-|k-,0,100000,,0,100000,-1.00E+09,1.00E+09,0,Detectors/beam_detector_devc.csv,2,3,Time,beam_1|beam_2|beam_3,FDS (beam\_1)|FDS (beam\_2)|FDS (beam\_3),ko|ro|go,0,100000,,0,100000,-1.00E+09,1.00E+09,0,Path Obscuration (beam\_detector),Time (s),Path Obscuration (%),0,1,1,0,110,1,no,0.25 0.90,East,,1,linear,FDS_User_Guide/SCRIPT_FIGURES/beam_detector_obs,Relative Error,end,0.01,Aerosols,r^,r,TeX
3838
d,beam_detector,Detectors/beam_detector_git.txt,Detectors/beam_detector_ss_check.csv,1,2,L,value,Exact,k-,0,100000,,0,100000,-1.00E+09,1.00E+09,0,Detectors/beam_detector_ss_smv.csv,1,2,L,value,Smokeview,ko,0,100000,,0,100000,-1.00E+09,1.00E+09,0,Smoke Obscuration (beam\_detector),Distance (m),Pixel Value,0,10,1,0,255,1,no,0.25 0.90,East,,1,linear,FDS_User_Guide/SCRIPT_FIGURES/beam_detector,N/A,end,0.02,Aerosols,r^,r,TeX
39+
d,bi_dir,Controls/bi_dir_git.txt,Controls/bi_dir.csv,1,2,Time,V1_0|V1_180|V1_30|V1_55,Expected 0^\circ|Expected 180^\circ|Expected 30^\circ|Expected 55^\circ,ko|ro|bo|go,0,100000,,5,100000,-1.00E+09,1.00E+09,0,Controls/bi_dir_devc.csv,2,3,Time,V1_0|V1_180|V1_30|V1_55,FDS 0^\circ|FDS 180^\circ|FDS 30^\circ|FDS 55^\circ,k-|r-|b-|g-,0,100000,,5,100000,-1.00E+09,1.00E+09,0,Measured Velocity (bi\_dir),Time (s),Velocity (m/s),0,20,1,-1.5,1.5,1,no,0.25 0.92,East,,1,linear,FDS_User_Guide/SCRIPT_FIGURES/bi_dir,Relative Error,mean,0.02,Controls,kd,k,TeX
40+
d,bi_dir,Controls/bi_dir_git.txt,Controls/bi_dir.csv,1,2,Time,Vp1_0|V10_0,Expected 0.1 m/s \times 100 |Expected 10 m/s,ko|ro,0,100000,,5,100000,-1.00E+09,1.00E+09,0,Controls/bi_dir_devc.csv,2,3,Time,Vp1_0|V10_0,FDS 0.1 m/s \times 100 |FDS 10 m/s,k-|r-,0,100000,,5,100000,-1.00E+09,1.00E+09,0,Measured Velocity (bi\_dir),Time (s),Velocity (m/s),0,20,1,0,15,1,no,0.25 0.92,SouthEast,,1,linear,FDS_User_Guide/SCRIPT_FIGURES/bi_dir_2,Relative Error,mean,0.02,Controls,kd,k,TeX
3941
d,bound_test_1,Species/bound_test_1_git.txt,Species/bound_test_1.csv,1,2,Time,F1|A1|P1|F2|A2|P2|Sum,F1|A1|P1|F2|A2|P2|Sum,ko|ro|bo|go|mo|co|k+,0,100000,,0,100000,-1.00E+09,1.00E+09,0,Species/bound_test_1_devc.csv,2,3,Time,XF1|XA1|XP1|XF2|XA2|XP2|SUM,FDS F1|FDS A1|FDS P1|FDS F2|FDS A2|FDS P2|FDS SUM,k-|r-|b-|g-|m-|c-|k--,0,100000,,0,100000,-1.00E+09,1.00E+09,0,Boundedness Test (bound\_test\_1),Time (s),Volume Fraction,0,1,1,0,1.05,1,no,0.05 0.90,EastOutside,,1.3,linear,FDS_Verification_Guide/SCRIPT_FIGURES/bound_test_1,Absolute Error,end,0.001,Species,kd,k,TeX
4042
d,bound_test_2,Species/bound_test_2_git.txt,Species/bound_test_2.csv,1,2,Time,F1|F2|A1|A2|P1|P2|P3|Sum,F1|F2|A1|A2|P1|P2|P3|Sum,ko|ro|bo|go|mo|co|yo|k+,0,100000,,0,100000,-1.00E+09,1.00E+09,0,Species/bound_test_2_devc.csv,2,3,Time,XF1|XF2|XA1|XA2|XP1|XP2|XP3|SUM,FDS F1|FDS F2|FDS A1|FDS A2|FDS P1|FDS P2|FDS P3|FDS SUM,k-|r-|b-|g-|m-|c-|y-|k--,0,100000,,0,100000,-1.00E+09,1.00E+09,0,Boundedness Test (bound\_test\_2),Time (s),Volume Fraction,0,1,1,0,1.05,1,no,0.05 0.90,EastOutside,,1.3,linear,FDS_Verification_Guide/SCRIPT_FIGURES/bound_test_2,Absolute Error,end,0.001,Species,kd,k,TeX
4143
d,box_burn_away1,Fires/box_burn_away1_git.txt,Fires/box_burn_away.csv,1,2,Time,Mass (kg),Ideal,ko,0,100000,,0,100000,-1.00E+09,1.00E+09,0,Fires/box_burn_away1_devc.csv,2,3,Time,Mass fuel,FDS (fuel),k-,0,100000,,0,100000,-1.00E+09,1.00E+09,0,Pyrolyzed Mass (box\_burn\_away1),Time (s),Mass (kg),0,30,1,0,1.5,1,no,0.05 0.90,East,,1,linear,FDS_User_Guide/SCRIPT_FIGURES/box_burn_away1,Relative Error,end,0.02,Fires,r*,r,TeX

Verification/Controls/bi_dir.csv

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,5 @@
1+
Time,V1_0,V1_180,V1_30,V1_55,Vp1_0,V10_0
2+
5,1.03,-1.03,1.1,0.86,12.7,10.2
3+
10,1.03,-1.03,1.1,0.86,12.7,10.2
4+
15,1.03,-1.03,1.1,0.86,12.7,10.2
5+
20,1.03,-1.03,1.1,0.86,12.7,10.2

Verification/Controls/bi_dir.fds

Lines changed: 31 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,31 @@
1+
&HEAD CHID='bi_dir',TITLE='Bi-directional probe test'/
2+
3+
&MISC STRATIFICATION=F/
4+
&RADI RADIATION=F/
5+
6+
&TIME T_END=20/
7+
8+
&DUMP NFRAMES=20/
9+
10+
&MESH XB=0.0,1.0,0,1,0,1,IJK=10,10,10/
11+
&MESH XB=1.1,2.1,0,1,0,1,IJK=10,10,10/
12+
&MESH XB=2.2,3.2,0,1,0,1,IJK=10,10,10/
13+
14+
&SURF ID='SLIP',NO_SLIP=T,DEFAULT=T/
15+
&SURF ID='0p1',VEL=-0.1,COLOR='RED'/
16+
&SURF ID='1p0',VEL=-1,COLOR='GREEN'/
17+
&SURF ID='10p0',VEL=-10,COLOR='BLUE'/
18+
19+
&VENT PBX=0.0,SURF_ID='0p1'/
20+
&VENT PBX=1.1,SURF_ID='1p0'/
21+
&VENT PBX=2.2,SURF_ID='10p0'/
22+
23+
&VENT MB='XMAX',SURF_ID='OPEN'/
24+
25+
&DEVC XYZ=0.5,0.5,0.5,QUANTITY='BI-DIRECTIONAL PROBE',ORIENTATION=1,0,0,ID='Vp1_0',CONVERSION_FACTOR=100/
26+
&DEVC XYZ=1.6,0.5,0.5,QUANTITY='BI-DIRECTIONAL PROBE',ORIENTATION=1,0,0,ID='V1_0'/
27+
&DEVC XYZ=1.6,0.5,0.5,QUANTITY='BI-DIRECTIONAL PROBE',ORIENTATION=-1,0,0,ID='V1_180'/
28+
&DEVC XYZ=1.6,0.5,0.5,QUANTITY='BI-DIRECTIONAL PROBE',ORIENTATION=0.8660,0.5000,0,ID='V1_30'/
29+
&DEVC XYZ=1.6,0.5,0.5,QUANTITY='BI-DIRECTIONAL PROBE',ORIENTATION=0.5736,0.8192,0,ID='V1_55'/
30+
&DEVC XYZ=2.7,0.5,0.5,QUANTITY='BI-DIRECTIONAL PROBE',ORIENTATION=1,0,0,ID='V10_0'/
31+

Verification/FDS_Cases.sh

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -177,6 +177,7 @@ $QFDS -p 5 -d Complex_Geometry geom_stretched_grid.fds
177177
$QFDS -p 3 -d Complex_Geometry thin_object_mass.fds
178178

179179
$QFDS -d Controls activate_vents.fds
180+
$QFDS -d Controls bi_dir.fds
180181
$QFDS -d Controls control_test.fds
181182
$QFDS -d Controls control_test_2.fds
182183
$QFDS -d Controls create_remove.fds

0 commit comments

Comments
 (0)