|
| 1 | +import numpy as np |
| 2 | +import matplotlib.pyplot as plt |
| 3 | +import os |
| 4 | +import pandas as pd |
| 5 | + |
| 6 | +# include FDS plot styles, etc. |
| 7 | +import fdsplotlib |
| 8 | + |
| 9 | +# Get plot style parameters |
| 10 | +plot_style = fdsplotlib.get_plot_style("fds") |
| 11 | +plt.rcParams['text.usetex'] = True # supports latex math (set per plot below) |
| 12 | +plt.rcParams["pdf.use14corefonts"] = True # forces matplotlib to write native pdf fonts rather than embed |
| 13 | +plt.rcParams["font.family"] = plot_style["Font_Name"] |
| 14 | +plt.rcParams["font.size"] = plot_style["Label_Font_Size"] |
| 15 | + |
| 16 | +# Define paths |
| 17 | +base_path = "../../../out/USFS_Catchpole/" |
| 18 | +fig_path = "../../Manuals/FDS_Validation_Guide/SCRIPT_FIGURES/USFS_Catchpole/" |
| 19 | + |
| 20 | +# Experiment parameters |
| 21 | +tests = pd.read_csv("../../Validation/USFS_Catchpole/FDS_Input_Files/Test_Matrix.csv") |
| 22 | + |
| 23 | +for ti,test in tests.iterrows(): |
| 24 | + chid = test['Test'] |
| 25 | + fds_file = os.path.join(base_path, f"{chid}_devc.csv") |
| 26 | + git_file = os.path.join(base_path, f"{chid}_git.txt") |
| 27 | + fig_file = os.path.join(fig_path, f"{chid}.pdf") |
| 28 | + |
| 29 | + if os.path.exists(fds_file) is False: |
| 30 | + print(f'Error: File {fds_file} does not exist. Skipping case.') |
| 31 | + continue |
| 32 | + |
| 33 | + fds_data = pd.read_csv(fds_file,header=1) |
| 34 | + |
| 35 | + # fit spread rate |
| 36 | + try: |
| 37 | + # fit slope filtering to positions greater than 2 m from ignition |
| 38 | + R_FDS,intercept = np.polyfit(fds_data[fds_data['x']>2]['Time'], |
| 39 | + fds_data[fds_data['x']>2]['x'], 1) # 1 indicates linear fit (degree 1) |
| 40 | + # not enough data to fit |
| 41 | + except: |
| 42 | + R_FDS=0. |
| 43 | + |
| 44 | + if R_FDS<0: |
| 45 | + R_FDS=0 |
| 46 | + |
| 47 | + fig, ax = plt.subplots(figsize=(plot_style["Paper_Width"], plot_style["Paper_Height"])) |
| 48 | + |
| 49 | + # Exp results |
| 50 | + x_exp = np.array([0., 8.]) |
| 51 | + t_exp = np.array([0., 8./test['R']]) |
| 52 | + ax.plot(t_exp,x_exp,'k-',label='Exp') |
| 53 | + |
| 54 | + # FDS results |
| 55 | + ax.plot(fds_data['Time'],fds_data['x'],'k--',label='FDS') |
| 56 | + |
| 57 | + # plot attributes |
| 58 | + ax.set_xlabel("Time (s)", |
| 59 | + fontdict={"fontname": plot_style["Font_Name"], |
| 60 | + "fontsize": plot_style["Label_Font_Size"]}) |
| 61 | + ax.set_ylabel("Distance (m)", |
| 62 | + fontdict={"fontname": plot_style["Font_Name"], |
| 63 | + "fontsize": plot_style["Label_Font_Size"]}) |
| 64 | + t_end = max(fds_data['Time'].max(),8./test['R']) |
| 65 | + ax.set_xlim([0, t_end]) |
| 66 | + ax.set_ylim([0, 8.]) |
| 67 | + plt.legend(loc="lower right", fontsize=plot_style["Key_Font_Size"], |
| 68 | + framealpha=1,frameon=True) |
| 69 | + ax.set_title(chid,fontsize=plot_style["Title_Font_Size"], |
| 70 | + loc="left",x=0.05,y=0.9) |
| 71 | + |
| 72 | + # add version sting |
| 73 | + version_str = fdsplotlib.get_version_string(git_file) |
| 74 | + fdsplotlib.add_version_string(ax, version_str, plot_type='linear') |
| 75 | + |
| 76 | + fig.tight_layout() |
| 77 | + plt.savefig(fig_file) |
| 78 | + plt.close() |
| 79 | + |
| 80 | + # write table for dataplot |
| 81 | + test['R_FDS'] = R_FDS |
| 82 | + test = test.drop('Test') |
| 83 | + out_file = os.path.join(base_path,f"{chid}_FDS.csv") |
| 84 | + pd.DataFrame([test]).to_csv(out_file,index=False) |
| 85 | + |
| 86 | + # add fds data to full table for summary plotting |
| 87 | + tests.loc[ti,'R_FDS'] = R_FDS |
| 88 | + |
| 89 | + |
| 90 | +##### Create summary plots |
| 91 | + |
| 92 | +# variables of interest |
| 93 | +dep_variables={"s":"Surface-to-Volume Ratio (1/m)", |
| 94 | + "beta":"Packing Ratio (-)", |
| 95 | + "U":"Wind Speed (m/s)", |
| 96 | + "M":"FMC (-)"} |
| 97 | + |
| 98 | +# fuel labels for filtering data |
| 99 | +fuel_labels=["MF","EXSC","PPMC","EX"] |
| 100 | + |
| 101 | +for dvar in dep_variables: |
| 102 | + |
| 103 | + fig_file = os.path.join(fig_path, f"Catchpole_R_v_{dvar}.pdf") |
| 104 | + fig, ax = plt.subplots(figsize=(plot_style["Paper_Width"], plot_style["Paper_Height"])) |
| 105 | + |
| 106 | + # show +/- 20% relative error |
| 107 | + [xmin,xmax] = [tests[dvar].min(),tests[dvar].max()] |
| 108 | + ax.semilogy([xmin,xmax],[0.8,0.8],'k--') |
| 109 | + ax.semilogy([xmin,xmax],[1.2,1.2],'k--') |
| 110 | + |
| 111 | + for fuel in fuel_labels: |
| 112 | + filtered_data = tests[tests['Test'].str.startswith(fuel)] |
| 113 | + if fuel=='EX': |
| 114 | + filtered_data = tests[ |
| 115 | + (tests['Test'].str.startswith(fuel))&(~tests['Test'].str.startswith('EXSC'))] |
| 116 | + |
| 117 | + ax.semilogy(filtered_data[dvar],filtered_data['R_FDS']/filtered_data['R'], |
| 118 | + '.',label=fuel) |
| 119 | + |
| 120 | + # plot attributes |
| 121 | + ax.set_xlabel(dep_variables[dvar], |
| 122 | + fontdict={"fontname": plot_style["Font_Name"], |
| 123 | + "fontsize": plot_style["Label_Font_Size"]}) |
| 124 | + ax.set_ylabel("$R_{FDS}/R_{Exp}$ (-)", |
| 125 | + fontdict={"fontname": plot_style["Font_Name"], |
| 126 | + "fontsize": plot_style["Label_Font_Size"]}) |
| 127 | + plt.legend(fontsize=plot_style["Key_Font_Size"], |
| 128 | + framealpha=1,frameon=True) |
| 129 | + ax.set_xlim([xmin,xmax]) |
| 130 | + |
| 131 | + # add version sting |
| 132 | + version_str = fdsplotlib.get_version_string(git_file) |
| 133 | + fdsplotlib.add_version_string(ax, version_str, plot_type='semilogy') |
| 134 | + |
| 135 | + plt.tight_layout() |
| 136 | + plt.savefig(fig_file) |
| 137 | + plt.close() |
| 138 | + |
| 139 | + |
| 140 | +# plot no-spread conditions |
| 141 | + |
| 142 | +fig_file = os.path.join(fig_path, "Catchpole_no_spread.pdf") |
| 143 | +fig, ax = plt.subplots(figsize=(plot_style["Paper_Width"], plot_style["Paper_Height"])) |
| 144 | + |
| 145 | +# dummy column for labeling |
| 146 | +tests['category']='go' |
| 147 | +tests.loc[tests['R_FDS']<1e-5,'category'] = 'no-go' |
| 148 | + |
| 149 | +# normalize by max and min |
| 150 | +tests_normalized = tests |
| 151 | +tests_normalized[list(dep_variables.keys())] = tests[list(dep_variables.keys())].apply( |
| 152 | + lambda x: (x - x.min()) / (x.max() - x.min())) |
| 153 | + |
| 154 | +# move M toward the middle of x-axis for more clarity |
| 155 | +tests_normalized=tests_normalized[['category','s','beta','M','U']] |
| 156 | + |
| 157 | +pd.plotting.parallel_coordinates(tests_normalized, 'category', |
| 158 | + cols=['s','beta','M','U'], |
| 159 | + color=[(1.,0.,0.,1), (0.,0.,0.,.2)], |
| 160 | + ax=ax, |
| 161 | + ls='-') |
| 162 | + |
| 163 | +ax.set_ylim([0, 1]) |
| 164 | +ax.set_yticks([0, 1],['min','max']) |
| 165 | +plt.legend(loc="upper left", fontsize=plot_style["Key_Font_Size"], |
| 166 | + framealpha=1,frameon=True) |
| 167 | + |
| 168 | +# Show the plot |
| 169 | +plt.tight_layout() |
| 170 | +plt.savefig(fig_file) |
| 171 | +plt.close() |
| 172 | + |
0 commit comments