Skip to content

Commit ca8e45c

Browse files
authored
Merge pull request #14111 from mcgratta/master
FDS Source: Issue #14006. Reduce QR_CLIP and smooth radiation source correction factor
2 parents 64447d8 + 39d6015 commit ca8e45c

File tree

5 files changed

+9
-11
lines changed

5 files changed

+9
-11
lines changed

Manuals/FDS_Technical_Reference_Guide/Radiation_Chapter.tex

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -335,9 +335,9 @@ \subsection{Radiation Contribution to Energy Equation}
335335

336336
\subsection{Correction of the Emission Source Term}
337337

338-
In calculations of limited spatial resolution, the source term, $I_{\rm b}$, defined in Eq.~(\ref{emission_source_term}) requires special treatment in the flaming region of the fire. Typical FDS calculations use grid cells that are tens of centimeters in size, and consequently the computed temperatures constitute a bulk average for a given grid cell and are considerably lower than the maximum temperature in a diffusion flame. Because of its fourth-power dependence on the temperature, the source term must be modeled in those grid cells where combustion occurs. Elsewhere, the computed temperature is used directly to compute the source term. It is assumed that this ``flaming region'' is where the local, nominal radiative loss is greater than a specified lower bound, $\chi_{\rm r} \dq'''>10$~kW/m$^3$. In this region, the global radiative fraction model is used. The emission source term is multiplied by a corrective factor, $C$:
338+
In calculations of limited spatial resolution, the source term, $I_{\rm b}$, defined in Eq.~(\ref{emission_source_term}) requires special treatment in the flaming region of the fire. Typical FDS calculations use grid cells that are tens of centimeters in size, and consequently the computed temperatures constitute a bulk average for a given grid cell and are considerably lower than the maximum temperature in a diffusion flame. Because of its fourth-power dependence on the temperature, the source term must be modeled in those grid cells where combustion occurs. Elsewhere, the computed temperature is used directly to compute the source term. It is assumed that this ``flaming region'' is where the local, nominal radiative loss is greater than a specified lower bound, $\chi_{\rm r} \dq'''>1$~kW/m$^3$. In this region, the global radiative fraction model is used. The emission source term is multiplied by a corrective factor, $C$:
339339
\be I_{\rm b,f}(\bx) = C \, \frac{\sigma \, T(\bx)^4}{\pi} \quad ; \quad
340-
C = \min \left( 100 \; , \; \max \left[0.1 \; , \; \frac{\sum_{\chi_{\rm r}\dq'''_{ijk}>10} \left( \chi_{\rm r} \, \dq'''_{ijk} + \kappa_{ijk} \, U_{ijk} \right) \, V_{ijk}}{\sum_{\chi_{\rm r} \dq'''_{ijk}>10} \left( 4 \, \kappa_{ijk} \, \sigma \, T^4_{ijk} \right) \, V_{ijk}} \right] \right) \label{corrected_emission_source_term}
340+
C = \min \left( 100 \; , \; \max \left[0.1 \; , \; \frac{\sum_{\chi_{\rm r}\dq'''_{ijk}>1} \left( \chi_{\rm r} \, \dq'''_{ijk} + \kappa_{ijk} \, U_{ijk} \right) \, V_{ijk}}{\sum_{\chi_{\rm r} \dq'''_{ijk}>1} \left( 4 \, \kappa_{ijk} \, \sigma \, T^4_{ijk} \right) \, V_{ijk}} \right] \right) \label{corrected_emission_source_term}
341341
\ee
342342
When the source term defined in Eq.~(\ref{corrected_emission_source_term}) is substituted into Eq.~(\ref{net_emission}), the net radiative emission from the flaming region becomes the desired fraction of the total heat release rate. Note that this correction factor is bounded below by 0.1 and above by 100. These bounds are somewhat arbitrary, meant to prevent spurious behavior at the start of a simulation.
343343

Manuals/FDS_User_Guide/FDS_User_Guide.tex

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -5756,15 +5756,15 @@ \subsection{Radiation Option 2. Optically-Thin Limit; Specified Radiative Fracti
57565756
\subsection[Radiation Option 3. Optically-Thick; Specified Radiative Fraction]{Radiation Option 3. Optically-Thick; Specified Radiative Fraction (LES Default)}
57575757
\label{info:RTE_Source_Correction}
57585758

5759-
In its normal operation, the RTE transfers energy from hot, emitting gases, like flames, to colder, absorbing gases like water vapor or soot particulate. The absorption coefficient, $\kappa$, computed using RadCal, governs both the emission and absorption of thermal radiation. Because flame temperatures are not well-resolved for typically large-scale fire simulations, the source term in the RTE is adjusted in grid cells for which the radiative fraction, $\chi_{\rm r}$, times the local heat release rate per unit volume, $\dot{q}'''$, is greater than 10~kW/m$^3$
5759+
In its normal operation, the RTE transfers energy from hot, emitting gases, like flames, to colder, absorbing gases like water vapor or soot particulate. The absorption coefficient, $\kappa$, computed using RadCal, governs both the emission and absorption of thermal radiation. Because flame temperatures are not well-resolved for typically large-scale fire simulations, the source term in the RTE is adjusted in grid cells for which the radiative fraction, $\chi_{\rm r}$, times the local heat release rate per unit volume, $\dot{q}'''$, is greater than 1~kW/m$^3$
57605760
\be
5761-
\chi_{\rm r} \, \dot{q}''' > 10 \; \hbox{kW/m}^3 \label{clip}
5761+
\chi_{\rm r} \, \dot{q}''' > 1 \; \hbox{kW/m}^3 \label{clip}
57625762
\ee
57635763
The adjustment ensures that the net radiative emission from the combusting region (i.e. the fire) is the specified \ct{RADIATIVE_FRACTION} multiplied by the total combustion energy generated in this region. Elsewhere, hot and cold gases emit and absorb thermal radiation according to their bulk temperature and radiative properties, in particular the absorption coefficient, $\kappa$.
57645764

57655765
The net radiative loss from the computational domain is reported as a function of time in the column \ct{Q_RADI} in the output file \ct{CHID_hrr.csv}. The absolute value of \ct{Q_RADI} divided by the total heat release rate, \ct{HRR}, is usually not exactly equal to the specified \ct{RADIATIVE_FRACTION}. The reason for this is that the specified radiative fraction of the fire's energy can be reabsorbed by colder combustion products such as smoke and water vapor, thereby decreasing the absolute value of \ct{Q_RADI}. Or, hot layer smoke and combustion products can heat up and emit thermal radiation, adding to the absolute value of \ct{Q_RADI}.
57665766

5767-
The correction factor that is applied to the RTE source term in the region defined by Eq.~(\ref{clip}) by default is bound between 1 and 100, meaning that the correction factor only increases the net radiative output of the combusting region, if necessary, to achieve the desired \ct{RADIATIVE_FRACTION}. However, you can change the default behavior of the correction as follows. First, you can force the RTE source term to be modified in all grid cells by changing the 10 in Eq.~(\ref{clip}) to -1 via \ct{QR_CLIP} on the \ct{RADI} line, in which case the solver will apply the radiative fraction to the entire domain, not just the cells where combustion occurs. This will essentially force the net radiative loss from the entire domain to obey the \ct{RADIATIVE_FRACTION}. Second, you can allow the RTE source term to increase or decrease in value to achieve the desired \ct{RADIATIVE_FRACTION} by changing the lower limit of the correction factor, \ct{C_MIN}, from its default value of 1 to, say, 0.5 on the \ct{RADI} line. The corresponding parameter, \ct{C_MAX}, limits the correction factor to 100. The time-varying correction factor can be output using a device with quantity \ct{RTE SOURCE CORRECTION FACTOR}. Since \ct{RTE SOURCE CORRECTION FACTOR} is a global value, the position of the device does not matter.
5767+
The correction factor that is applied to the RTE source term in the region defined by Eq.~(\ref{clip}) by default is bound between 1 and 100, meaning that the correction factor only increases the net radiative output of the combusting region, if necessary, to achieve the desired \ct{RADIATIVE_FRACTION}. However, you can change the default behavior of the correction as follows. First, you can force the RTE source term to be modified in all grid cells by changing the 1 in Eq.~(\ref{clip}) to -1 via \ct{QR_CLIP} on the \ct{RADI} line, in which case the solver will apply the radiative fraction to the entire domain, not just the cells where combustion occurs. This will essentially force the net radiative loss from the entire domain to obey the \ct{RADIATIVE_FRACTION}. Second, you can allow the RTE source term to increase or decrease in value to achieve the desired \ct{RADIATIVE_FRACTION} by changing the lower limit of the correction factor, \ct{C_MIN}, from its default value of 1 to, say, 0.5 on the \ct{RADI} line. The corresponding parameter, \ct{C_MAX}, limits the correction factor to 100. The time-varying correction factor can be output using a device with quantity \ct{RTE SOURCE CORRECTION FACTOR}. Since \ct{RTE SOURCE CORRECTION FACTOR} is a global value, the position of the device does not matter.
57685768

57695769
\subsection[Radiation Option 4. Optically-Thick; Unspecified Radiative Fraction]{Radiation Option 4. Optically-Thick; Unspecified Radiative Fraction (DNS Default)}
57705770

@@ -13104,7 +13104,7 @@ \section{\texorpdfstring{{\tt RADI}}{RADI} (Radiation Parameters)}
1310413104
\ct{NUMBER_RADIATION_ANGLES} & Integer & Section~\ref{info:RADI_Resolution} & & 100 \\ \hline
1310513105
\ct{OPTICALLY_THIN} & Logical & Section~\ref{info:CHI_R} & & \ct{F} \\ \hline
1310613106
\ct{PATH_LENGTH } & Real & Section~\ref{info:RadCal} & m & 0.1 \\ \hline
13107-
\ct{QR_CLIP} & Real & Section~\ref{info:CHI_R} & kW/m$^3$ & 10 \\ \hline
13107+
\ct{QR_CLIP} & Real & Section~\ref{info:CHI_R} & kW/m$^3$ & 1 \\ \hline
1310813108
\ct{RADIATION} & Logical & Section~\ref{info:radiation_off} & & \ct{T} \\ \hline
1310913109
\ct{RADIATION_ITERATIONS} & Integer & Section~\ref{info:RADI_Resolution} & & 1 \\ \hline
1311013110
\ct{RADTMP} & Real & Section~\ref{info:RADI_Two_Phase} & $^\circ$C & 900 \\ \hline

Source/cons.f90

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -471,7 +471,7 @@ MODULE GLOBAL_CONSTANTS
471471
REAL(EB) :: RTE_SOURCE_CORRECTION_FACTOR=1._EB !< Multiplicative factor used in correcting RTE source term
472472
REAL(EB) :: RAD_Q_SUM=0._EB !< \f$ \sum_{ijk} \left( \chi_{\rm r} \dot{q}_{ijk}''' + \kappa_{ijk} U_{ijk} \right) V_{ijk} \f$
473473
REAL(EB) :: KFST4_SUM=0._EB !< \f$ \sum_{ijk} 4 \kappa_{ijk} \sigma T_{ijk}^4 V_{ijk} \f$
474-
REAL(EB) :: QR_CLIP=10._EB !< Lower bound of \f$ \chi_{\rm r} \dot{q}_{ijk}''' \f$ below which no source correction is made
474+
REAL(EB) :: QR_CLIP=1._EB !< Lower bound of \f$ \chi_{\rm r} \dot{q}_{ijk}''' \f$ below which no source correction is made
475475
REAL(EB) :: C_MAX=100._EB !< Maximum value of RAD_Q_SUM/KFST4_SUM
476476
REAL(EB) :: C_MIN=0.1_EB !< Minimum value of RAD_Q_SUM/KFST4_SUM
477477

Source/main.f90

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1517,7 +1517,7 @@ END SUBROUTINE PRESSURE_ITERATION_SCHEME
15171517

15181518
SUBROUTINE CALCULATE_RTE_SOURCE_CORRECTION_FACTOR
15191519

1520-
REAL(EB), PARAMETER :: WGT=0.5_EB
1520+
REAL(EB), PARAMETER :: WGT=0.9_EB
15211521
REAL(EB) :: TNOW
15221522

15231523
TNOW = CURRENT_TIME()

Source/radi.f90

Lines changed: 1 addition & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -3475,7 +3475,7 @@ SUBROUTINE RADIATION_FVM
34753475
REAL(EB) :: XID,YJD,ZKD,KAPPA_PART_SINGLE,DLF,DLA(3),TSI,TMP_EXTERIOR,TEMP_ORIENTATION(3)
34763476
REAL(EB), ALLOCATABLE, DIMENSION(:) :: ZZ_GET
34773477
INTEGER :: IID,JJD,KKD,IP
3478-
LOGICAL :: UPDATE_INTENSITY, UPDATE_QRW2
3478+
LOGICAL :: UPDATE_INTENSITY
34793479
REAL(EB), POINTER, DIMENSION(:,:,:) :: IL,UIIOLD,KAPPA_PART,KFST4_PART,EXTCOE,SCAEFF,SCAEFF_G,IL_UP
34803480
REAL(EB), POINTER, DIMENSION(:) :: OUTRAD_W,INRAD_W,OUTRAD_F,INRAD_F,IL_F
34813481
TYPE (OMESH_TYPE), POINTER :: M2
@@ -3574,8 +3574,6 @@ SUBROUTINE RADIATION_FVM
35743574
ENDDO
35753575
ENDIF
35763576

3577-
UPDATE_QRW2 = .FALSE.
3578-
35793577
! Loop over spectral bands
35803578

35813579
BAND_LOOP: DO IBND = 1,NUMBER_SPECTRAL_BANDS

0 commit comments

Comments
 (0)