You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
The output quantity \ct{BI-DIRECTIONAL PROBE} is the velocity of a modeled bi-directional probe. A bi-directional probe uses the following equation:
10570
+
The output quantity \ct{BI-DIRECTIONAL PROBE} is the velocity of a modeled bi-directional probe. A bi-directional probe uses the following equation~\cite{McCaffrey:1976}:
10571
10571
\be
10572
10572
C \sqrt{\frac{2 \Delta P}{\rho}}
10573
10573
\label{BDP}
10574
10574
\ee
10575
10575
where $C$ is a calibration constant (default value is 0.93), $\Delta P$ is the pressure difference across the probe, and $\rho$ is the gas density at the probe. In a typical experiment, the gas density is computed assuming standard pressure (101325 Pa), the molecular weight of air (28.8 g/mol), and the temperature as measured by a thermocouple near the probe.
10576
10576
10577
-
Bi-directional probes have biases due to both the Reynolds number (based on the probe diameter) of the flow and the angle of the flow with respect to the probe axis~\cite{McCaffrey:1976}. At low Reynolds number a probe will measure a higher effective velocity. As the angle of the flow vector with the axis increases, the effective velocity at first increases up to an angle of 30$^\circ$ due to a low pressure region forming downstream of the probe, and then decreases reaching no measured flow at an angle of 90$^\circ$. This model accounts for these sensitivities and the impact of density differences from varied molecular weight at the probe. The orientation of the probe can be specified with either \ct{IOR} or \ct{ORIENTATION} on \ct{DEVC}. A probe with \ct{IOR}=-1 would have a positive velocity output when the flow is in the -x direction. Parameters for the probe can be specified with a \ct{PROP_ID} on the \ct {DEVC}. The calibration constant (default of 0.93) and the probe diameter (default of 0.0254 m) can be set respectively with \ct{CALIBRATION_CONSTANT} and \ct{PROBE_DIAMETER} on \ct{PROP}. If the probe temperature is an aspirated thermocouple or other measurement not sensitive to the radiative environment, then set \ct{TC=F} on \ct{PROP}. Thermocouple specific properties for a bi-directional probe, see Section~\ref{info:THERMOCOUPLE}, should be set with the same \ct{PROP} as for the probe.
10577
+
Bi-directional probes have biases due to both the Reynolds number (based on the probe diameter) of the flow and the angle of the flow with respect to the probe axis~\cite{McCaffrey:1976}. At low Reynolds number a probe will measure a higher effective velocity. As the angle of the flow vector with the axis increases, the effective velocity at first increases up to an angle of 30$^\circ$ due to a low pressure region forming downstream of the probe, and then decreases reaching no measured flow at an angle of 90$^\circ$. This model accounts for these sensitivities and the impact of density differences from varied molecular weight at the probe. The orientation of the probe can be specified with either \ct{IOR} or \ct{ORIENTATION} on \ct{DEVC}. A probe with \ct{IOR}=-1 would have a positive velocity output when the flow is in the -x direction. Parameters for the probe can be specified with a \ct{PROP_ID} on the \ct {DEVC}. The calibration constant (default of 0.93) and the probe diameter (default of 0.0254 m) can be set respectively with \ct{CALIBRATION_CONSTANT} and \ct{PROBE_DIAMETER} on \ct{PROP}. If the probe temperature is an aspirated thermocouple or other measurement not sensitive to the radiative environment, then set \ct{TC=F} on \ct{PROP}. Thermocouple specific properties for a bi-directional probe, see Section~\ref{info:THERMOCOUPLE}, should be set with the same \ct{PROP} as for the probe. If a dynamic calibration constant based on the Reynolds number calibration in McCaffrey~\cite{McCaffrey:1976} was used set \ct{CALIBRATION_CONSTANT=-1}.
10578
10578
10579
10579
Figure~\ref{bi_dir_fig} shows the results of a bi-directional probe with varying angle to a 1~m/s flow and varying flow speed.
0 commit comments