Skip to content

Commit ee7d806

Browse files
authored
Merge pull request #14290 from rmcdermo/master
FDS Validation: update impinging jet convection cases
2 parents 6dd62ea + 5bb9a6c commit ee7d806

File tree

8 files changed

+55
-27
lines changed

8 files changed

+55
-27
lines changed

Manuals/FDS_User_Guide/FDS_User_Guide.tex

Lines changed: 13 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -2245,24 +2245,24 @@ \subsubsection{Default Convective Heat Transfer Model}
22452245

22462246
The length scale, $L$, is specified by \ct{CONVECTION_LENGTH_SCALE} on the \ct{SURF} line. By default, it is 1~m for plates, and the diameter of a sphere or cylinder.
22472247

2248-
\subsubsection{Impinging Jet Heat Transfer Model}
2249-
\label{info:impinging_jet}
2250-
2251-
The forced convection heat transfer correlations generally apply to flow parallel to a surface. When the flow is an impinging jet (normal and toward the surface) then the tangential components of velocity are not well resolved at the impingement point and consequently a fictitiously low value of heat transfer coefficient will be predicted if special consideration is not given to the surface. If the surface may be subject to an impinging jet or stagnation point flow (in fire, usually this pertains to ceilings above a fire source), consider using impinging jet heat transfer model, applied on \ct{SURF} using \ct{HEAT_TRANSFER_MODEL='IMPINGING JET'}. The default form of the model is similar to the forced convection correlation, but the Reynolds number is computed using an ``impact velocity'' computed as $U_{\rm{imp}} = \sqrt{2H}$, where $H$ is the stagnation energy per unit mass (see FDS Tech Guide ~\cite{FDS_Math_Guide}).
2252-
\be
2253-
\NU_{\rm imp} = C_0 + \left( C_1 \, \RE_{\rm imp}^m - C_2 \right) \, \PR^{1/3} \quad ; \quad \RE_{\rm imp} = \frac{\rho U_{\rm{imp}} L}{\mu}
2254-
\ee
2255-
The default coefficients are $C_0=0$, $C_1=0.055$, $C_2=0$, $m=0.8$. But custom values may be entered on the \ct{SURF} line as described above. Again, the default length scale is taken to be $L=1$ m, but may be changed. This value is usually set to the diameter of the jet source in the literature. The heat transfer coefficient obtained from $\NU_{\rm imp}$ is compared to that from forced and free convection and the largest value is chosen for the surface.
2256-
22572248
\subsubsection{Output for Convective Heat Transfer Regime}
22582249
\label{info:convection_regime}
22592250

22602251
It may be useful to visualize which convective heat transfer correlation is being exercised to compute the heat transfer coefficient. This can be accomplished by using the solid phase output quantity \ct{'CONVECTIVE HEAT TRANSFER REGIME'} on \ct{BNDF} or \ct{DEVC}. For wall surfaces (not available for particles), the regime is mapped to an integer value, \ct{1 = NATURAL}, \ct{2 = FORCED}, \ct{3 = IMPACT}, \ct{4 = RESOLVED}, which is color coded for boundary visualization.
22612252

22622253
\subsubsection{Specified Convective Heat Transfer Coefficient}
22632254

2264-
To specify the convective heat transfer coefficient, set it to a constant using \\
2265-
\ct{HEAT_TRANSFER_COEFFICIENT} on the \ct{SURF} line in units of \unit{W/(m^2.K)} with optional time dependent ramp using \ct{RAMP_HEAT_TRANSFER_COEFFICIENT}. If the back side of the solid obstruction faces the exterior of the computational domain and the solid conducts heat, the heat transfer coefficient of the back side may be specified using \ct{HEAT_TRANSFER_COEFFICIENT_BACK} with optional time dependent ramp ramp using \ct{RAMP_HEAT_TRANSFER_COEFFICIENT_BACK}. This back side condition is appropriate for a \ct{SURF} line with \ct{BACKING='VOID'} or \ct{BACKING='EXPOSED'}.
2255+
To specify the convective heat transfer coefficient, set it to a constant using \ct{HEAT_TRANSFER_COEFFICIENT} on the \ct{SURF} line in units of \unit{W/(m^2.K)} with optional time dependent ramp using\\\ct{RAMP_HEAT_TRANSFER_COEFFICIENT}. If the back side of the solid obstruction faces the exterior of the computational domain and the solid conducts heat, the heat transfer coefficient of the back side may be specified using \ct{HEAT_TRANSFER_COEFFICIENT_BACK} with optional time dependent ramp ramp using\\\ct{RAMP_HEAT_TRANSFER_COEFFICIENT_BACK}. This back side condition is appropriate for a \ct{SURF} line with \ct{BACKING='VOID'} or \ct{BACKING='EXPOSED'}.
2256+
2257+
\subsubsection{Impinging Jet Heat Transfer Model}
2258+
\label{info:impinging_jet}
2259+
2260+
The forced convection heat transfer correlations generally apply to flow parallel to a surface. When the flow is an impinging jet (normal and toward the surface) then the tangential components of velocity are not well resolved at the impingement point and consequently a fictitiously low value of heat transfer coefficient will be predicted if special consideration is not given to the surface. If the surface may be subject to an impinging jet or stagnation point flow (in fire, usually this pertains to ceilings above a fire source), consider using impinging jet heat transfer model, applied on \ct{SURF} using \ct{HEAT_TRANSFER_MODEL='IMPINGING JET'}.
2261+
2262+
The impinging jet model is an extension of the user-specified $h$ that allows you to specify a Gaussian radial profile parameterized by a center point, \ct{XYZ(1:3)}, a width in meters (m),\\\ct{HEAT_TRANSFER_COEFFICIENT_SIGMA}, and the peak value, $h_0$, using \ct{HEAT_TRANSFER_COEFFICIENT}, all on the \ct{SURF} line. You may determine these parameters using correlations in \cite{Incropera:1}, for example. Take note that the correlations usually give the average heat transfer coefficient over an area, $\bar{h}$. It can be shown that the ratio of the peak to average for a Gaussian profile over area $A=\pi \sigma^2$ is $h_0/\bar{h} \approx 1.3$. An example \ct{SURF} line is given below.
2263+
\begin{lstlisting}
2264+
&SURF ID='WALL', HEAT_TRANSFER_MODEL='IMPINGING JET', XYZ=0,0,1, HEAT_TRANSFER_COEFFICIENT=50, HEAT_TRANSFER_COEFFICIENT_SIGMA=0.5 /
2265+
\end{lstlisting}
22662266

22672267
\subsubsection{Specifying the Heat Flux at a Solid Surface}
22682268
\label{info:net_and_convective_heat_flux}
@@ -10556,7 +10556,7 @@ \subsection{Heat Flux}
1055610556

1055710557
\item \ct{'GAUGE HEAT FLUX GAS'} The same as \ct{'GAUGE HEAT FLUX'}, except that it can be located anywhere within the computational domain and not just at a solid surface. It also has an arbitrary \ct{ORIENTATION} vector that points in any desired direction. The \ct{ORIENTATION} vector need not be normalized, as in the following:
1055810558
\begin{lstlisting}
10559-
&DEVC ID='hf', QUANTITY='GAUGE HEAT FLUX GAS', XYZ=..., ORIENTATION=-1,1,0,
10559+
&DEVC ID='hf', QUANTITY='GAUGE HEAT FLUX GAS', XYZ=..., ORIENTATION=-1,1,0,
1056010560
PROP_ID='my gauge' /
1056110561
&PROP ID='my gauge', GAUGE_EMISSIVITY=0.85, HEAT_TRANSFER_COEFFICIENT=15. /
1056210562
\end{lstlisting}
@@ -13428,6 +13428,7 @@ \section{\texorpdfstring{{\tt SURF}}{SURF} (Surface Properties)}
1342813428
\ct{HEAT_OF_VAPORIZATION} & Real & Section~\ref{info:specified_burning} & kJ/kg & \\ \hline
1342913429
\ct{HEAT_TRANSFER_COEFFICIENT} & Real & Section~\ref{info:convection} & \si{W/(m^2.K)} & \\ \hline
1343013430
\ct{HEAT_TRANSFER_COEFFICIENT_BACK} & Real & Section~\ref{info:convection} & \si{W/(m^2.K)} & \\ \hline
13431+
\ct{HEAT_TRANSFER_COEFFICIENT_SIGMA} & Real & Section~\ref{info:impinging_jet} & m & \\ \hline
1343113432
\ct{HEAT_TRANSFER_MODEL} & Character & Section~\ref{info:convection} & & \\ \hline
1343213433
\ct{HORIZONTAL} & Logical & Section~\ref{info:GEOMETRY} & & \ct{F} \\ \hline
1343313434
\ct{HRRPUA} & Real & Section~\ref{info:gas_burner} & \si{kW/m^2} & \\ \hline

Utilities/Matlab/scripts/impinging_jet.m

Lines changed: 6 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,6 @@
1717
% plot the correlation
1818

1919
D_h = 0.2; % hydraulic diameter of the jet [m]
20-
dz = 1/64; % grid resolution [m]
2120
H = 1; % distance from jet to wall [m]
2221
mu = 1.822E-05; % dynamic viscosity, [kg/m/s]
2322
k = 2.566E-02; % thermal conductivity [W/m/K]
@@ -43,11 +42,10 @@
4342
res_str = {'coarse','medium','fine'};
4443
Re_str = {'1e5','4e5'};
4544

46-
% errors from original implementation (rows = Re_str and cols = res_str)
47-
E = [0.056918654162878 0.041857745609598 0.116595781318777; ...
48-
0.006162200000000 0.063273295539949 0.270795928496828];
45+
% relative error tolerance
46+
E_tol = 0.1;
4947

50-
E_FDS = zeros(size(E));
48+
E_FDS = zeros(3,2);
5149

5250
for j=1:length(res_str)
5351
for i=1:length(Re_str)
@@ -69,10 +67,9 @@
6967

7068
E_FDS(i,j) = abs(Nu - Nu_fds)/abs(Nu);
7169

72-
% Temporarily suspend error check
73-
% if E_FDS(i,j) > E(i,j)*1.1
74-
% disp(['Matlab Warning: impinging jet error = ',num2str(E_FDS(i,j)),' at Re_j=',Re_str{i},', Res=',res_str{j}])
75-
% end
70+
if E_FDS(i,j) > E_tol
71+
disp(['Matlab Warning: impinging jet error = ',num2str(E_FDS(i,j)),' at Re_j=',Re_str{i},', Res=',res_str{j}])
72+
end
7673

7774
if i==1
7875
if j==1

Validation/Convection/FDS_Input_Files/impinging_jet_Re_1e5_coarse.fds

Lines changed: 6 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@
1717

1818
&SPEC ID='LJ AIR', SPECIFIC_HEAT=1., CONDUCTIVITY=0.025656, VISCOSITY=1.8216E-5, BACKGROUND=T/ ! Pr=0.71
1919

20-
&SURF ID='WALL', COLOR='BLUE', HEAT_TRANSFER_MODEL='IMPINGING JET' /
20+
&SURF ID='WALL', COLOR='BLUE', XYZ=0,0,1, HEAT_TRANSFER_MODEL='IMPINGING JET', HEAT_TRANSFER_COEFFICIENT=41, HEAT_TRANSFER_COEFFICIENT_SIGMA=0.5 /
2121
&SURF ID='HOT JET', COLOR='RED', TMP_FRONT=100, VEL=-10 /
2222
&VENT XB=-0.1,0.1,-0.1,0.1,0,0, SURF_ID='HOT JET'/
2323

@@ -38,6 +38,11 @@
3838
&BNDF QUANTITY='CONVECTIVE HEAT TRANSFER REGIME', CELL_CENTERED=T/
3939

4040
&SLCF PBY=0.001, QUANTITY='TEMPERATURE', CELL_CENTERED=T /
41+
&SLCF PBY=0.001, QUANTITY='DIVERGENCE', CELL_CENTERED=T /
42+
&SLCF PBY=0.001, QUANTITY='STRAIN RATE', CELL_CENTERED=T /
43+
&SLCF PBY=0.001, QUANTITY='DISSIPATION RATE', CELL_CENTERED=T /
44+
&SLCF PBY=0.001, QUANTITY='RESOLVED KINETIC ENERGY', CELL_CENTERED=T /
45+
&SLCF PBY=0.001, QUANTITY='SUBGRID KINETIC ENERGY', CELL_CENTERED=T /
4146
&SLCF PBY=0.001, QUANTITY='H', CELL_CENTERED=T /
4247
&SLCF PBY=0.001, QUANTITY='VISCOSITY', CELL_CENTERED=T /
4348
&SLCF PBY=0.001, QUANTITY='VELOCITY', VECTOR=T /

Validation/Convection/FDS_Input_Files/impinging_jet_Re_1e5_fine.fds

Lines changed: 6 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,7 @@
2020

2121
&SPEC ID='LJ AIR', SPECIFIC_HEAT=1., CONDUCTIVITY=0.025656, VISCOSITY=1.8216E-5, BACKGROUND=T/ ! Pr=0.71
2222

23-
&SURF ID='WALL', COLOR='BLUE', HEAT_TRANSFER_MODEL='IMPINGING JET' /
23+
&SURF ID='WALL', COLOR='BLUE', XYZ=0,0,1, HEAT_TRANSFER_MODEL='IMPINGING JET', HEAT_TRANSFER_COEFFICIENT=41, HEAT_TRANSFER_COEFFICIENT_SIGMA=0.5 /
2424
&SURF ID='HOT JET', COLOR='RED', TMP_FRONT=100, VEL=-10 /
2525
&VENT XB=-0.1,0.1,-0.1,0.1,0,0, SURF_ID='HOT JET'/
2626

@@ -41,6 +41,11 @@
4141
&BNDF QUANTITY='CONVECTIVE HEAT TRANSFER REGIME', CELL_CENTERED=T/
4242

4343
&SLCF PBY=0.001, QUANTITY='TEMPERATURE', CELL_CENTERED=T /
44+
&SLCF PBY=0.001, QUANTITY='DIVERGENCE', CELL_CENTERED=T /
45+
&SLCF PBY=0.001, QUANTITY='STRAIN RATE', CELL_CENTERED=T /
46+
&SLCF PBY=0.001, QUANTITY='DISSIPATION RATE', CELL_CENTERED=T /
47+
&SLCF PBY=0.001, QUANTITY='RESOLVED KINETIC ENERGY', CELL_CENTERED=T /
48+
&SLCF PBY=0.001, QUANTITY='SUBGRID KINETIC ENERGY', CELL_CENTERED=T /
4449
&SLCF PBY=0.001, QUANTITY='H', CELL_CENTERED=T /
4550
&SLCF PBY=0.001, QUANTITY='VISCOSITY', CELL_CENTERED=T /
4651
&SLCF PBY=0.001, QUANTITY='VELOCITY', VECTOR=T /

Validation/Convection/FDS_Input_Files/impinging_jet_Re_1e5_medium.fds

Lines changed: 6 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@
1717

1818
&SPEC ID='LJ AIR', SPECIFIC_HEAT=1., CONDUCTIVITY=0.025656, VISCOSITY=1.8216E-5, BACKGROUND=T/ ! Pr=0.71
1919

20-
&SURF ID='WALL', COLOR='BLUE', HEAT_TRANSFER_MODEL='IMPINGING JET' /
20+
&SURF ID='WALL', COLOR='BLUE', XYZ=0,0,1, HEAT_TRANSFER_MODEL='IMPINGING JET', HEAT_TRANSFER_COEFFICIENT=41, HEAT_TRANSFER_COEFFICIENT_SIGMA=0.5 /
2121
&SURF ID='HOT JET', COLOR='RED', TMP_FRONT=100, VEL=-10 /
2222
&VENT XB=-0.1,0.1,-0.1,0.1,0,0, SURF_ID='HOT JET'/
2323

@@ -38,6 +38,11 @@
3838
&BNDF QUANTITY='CONVECTIVE HEAT TRANSFER REGIME', CELL_CENTERED=T/
3939

4040
&SLCF PBY=0.001, QUANTITY='TEMPERATURE', CELL_CENTERED=T /
41+
&SLCF PBY=0.001, QUANTITY='DIVERGENCE', CELL_CENTERED=T /
42+
&SLCF PBY=0.001, QUANTITY='STRAIN RATE', CELL_CENTERED=T /
43+
&SLCF PBY=0.001, QUANTITY='DISSIPATION RATE', CELL_CENTERED=T /
44+
&SLCF PBY=0.001, QUANTITY='RESOLVED KINETIC ENERGY', CELL_CENTERED=T /
45+
&SLCF PBY=0.001, QUANTITY='SUBGRID KINETIC ENERGY', CELL_CENTERED=T /
4146
&SLCF PBY=0.001, QUANTITY='H', CELL_CENTERED=T /
4247
&SLCF PBY=0.001, QUANTITY='VISCOSITY', CELL_CENTERED=T /
4348
&SLCF PBY=0.001, QUANTITY='VELOCITY', VECTOR=T /

Validation/Convection/FDS_Input_Files/impinging_jet_Re_4e5_coarse.fds

Lines changed: 6 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@
1717

1818
&SPEC ID='LJ AIR', SPECIFIC_HEAT=1., CONDUCTIVITY=0.025656, VISCOSITY=1.8216E-5, BACKGROUND=T/ ! Pr=0.71
1919

20-
&SURF ID='WALL', COLOR='BLUE', HEAT_TRANSFER_MODEL='IMPINGING JET' /
20+
&SURF ID='WALL', COLOR='BLUE', XYZ=0,0,1, HEAT_TRANSFER_MODEL='IMPINGING JET', HEAT_TRANSFER_COEFFICIENT=109, HEAT_TRANSFER_COEFFICIENT_SIGMA=0.5 /
2121
&SURF ID='HOT JET', COLOR='RED', TMP_FRONT=100, VEL=-40, TAU_V=0.25, TAU_T=0.25 /
2222
&VENT XB=-0.1,0.1,-0.1,0.1,0,0, SURF_ID='HOT JET'/
2323

@@ -38,6 +38,11 @@
3838
&BNDF QUANTITY='CONVECTIVE HEAT TRANSFER REGIME', CELL_CENTERED=T/
3939

4040
&SLCF PBY=0.001, QUANTITY='TEMPERATURE', CELL_CENTERED=T /
41+
&SLCF PBY=0.001, QUANTITY='DIVERGENCE', CELL_CENTERED=T /
42+
&SLCF PBY=0.001, QUANTITY='STRAIN RATE', CELL_CENTERED=T /
43+
&SLCF PBY=0.001, QUANTITY='DISSIPATION RATE', CELL_CENTERED=T /
44+
&SLCF PBY=0.001, QUANTITY='RESOLVED KINETIC ENERGY', CELL_CENTERED=T /
45+
&SLCF PBY=0.001, QUANTITY='SUBGRID KINETIC ENERGY', CELL_CENTERED=T /
4146
&SLCF PBY=0.001, QUANTITY='H', CELL_CENTERED=T /
4247
&SLCF PBY=0.001, QUANTITY='VISCOSITY', CELL_CENTERED=T /
4348
&SLCF PBY=0.001, QUANTITY='VELOCITY', VECTOR=T /

Validation/Convection/FDS_Input_Files/impinging_jet_Re_4e5_fine.fds

Lines changed: 6 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,7 @@
2020

2121
&SPEC ID='LJ AIR', SPECIFIC_HEAT=1., CONDUCTIVITY=0.025656, VISCOSITY=1.8216E-5, BACKGROUND=T/ ! Pr=0.71
2222

23-
&SURF ID='WALL', COLOR='BLUE', HEAT_TRANSFER_MODEL='IMPINGING JET' /
23+
&SURF ID='WALL', COLOR='BLUE', XYZ=0,0,1, HEAT_TRANSFER_MODEL='IMPINGING JET', HEAT_TRANSFER_COEFFICIENT=109, HEAT_TRANSFER_COEFFICIENT_SIGMA=0.5 /
2424
&SURF ID='HOT JET', COLOR='RED', TMP_FRONT=100, VEL=-40, TAU_V=0.25, TAU_T=0.25 /
2525
&VENT XB=-0.1,0.1,-0.1,0.1,0,0, SURF_ID='HOT JET'/
2626

@@ -41,6 +41,11 @@
4141
&BNDF QUANTITY='CONVECTIVE HEAT TRANSFER REGIME', CELL_CENTERED=T/
4242

4343
&SLCF PBY=0.001, QUANTITY='TEMPERATURE', CELL_CENTERED=T /
44+
&SLCF PBY=0.001, QUANTITY='DIVERGENCE', CELL_CENTERED=T /
45+
&SLCF PBY=0.001, QUANTITY='STRAIN RATE', CELL_CENTERED=T /
46+
&SLCF PBY=0.001, QUANTITY='DISSIPATION RATE', CELL_CENTERED=T /
47+
&SLCF PBY=0.001, QUANTITY='RESOLVED KINETIC ENERGY', CELL_CENTERED=T /
48+
&SLCF PBY=0.001, QUANTITY='SUBGRID KINETIC ENERGY', CELL_CENTERED=T /
4449
&SLCF PBY=0.001, QUANTITY='H', CELL_CENTERED=T /
4550
&SLCF PBY=0.001, QUANTITY='VISCOSITY', CELL_CENTERED=T /
4651
&SLCF PBY=0.001, QUANTITY='VELOCITY', VECTOR=T /

Validation/Convection/FDS_Input_Files/impinging_jet_Re_4e5_medium.fds

Lines changed: 6 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@
1717

1818
&SPEC ID='LJ AIR', SPECIFIC_HEAT=1., CONDUCTIVITY=0.025656, VISCOSITY=1.8216E-5, BACKGROUND=T/ ! Pr=0.71
1919

20-
&SURF ID='WALL', COLOR='BLUE', HEAT_TRANSFER_MODEL='IMPINGING JET' /
20+
&SURF ID='WALL', COLOR='BLUE', XYZ=0,0,1, HEAT_TRANSFER_MODEL='IMPINGING JET', HEAT_TRANSFER_COEFFICIENT=109, HEAT_TRANSFER_COEFFICIENT_SIGMA=0.5 /
2121
&SURF ID='HOT JET', COLOR='RED', TMP_FRONT=100, VEL=-40, TAU_V=0.25, TAU_T=0.25 /
2222
&VENT XB=-0.1,0.1,-0.1,0.1,0,0, SURF_ID='HOT JET'/
2323

@@ -38,6 +38,11 @@
3838
&BNDF QUANTITY='CONVECTIVE HEAT TRANSFER REGIME', CELL_CENTERED=T/
3939

4040
&SLCF PBY=0.001, QUANTITY='TEMPERATURE', CELL_CENTERED=T /
41+
&SLCF PBY=0.001, QUANTITY='DIVERGENCE', CELL_CENTERED=T /
42+
&SLCF PBY=0.001, QUANTITY='STRAIN RATE', CELL_CENTERED=T /
43+
&SLCF PBY=0.001, QUANTITY='DISSIPATION RATE', CELL_CENTERED=T /
44+
&SLCF PBY=0.001, QUANTITY='RESOLVED KINETIC ENERGY', CELL_CENTERED=T /
45+
&SLCF PBY=0.001, QUANTITY='SUBGRID KINETIC ENERGY', CELL_CENTERED=T /
4146
&SLCF PBY=0.001, QUANTITY='H', CELL_CENTERED=T /
4247
&SLCF PBY=0.001, QUANTITY='VISCOSITY', CELL_CENTERED=T /
4348
&SLCF PBY=0.001, QUANTITY='VELOCITY', VECTOR=T /

0 commit comments

Comments
 (0)