-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
Copy path__init__.py
199 lines (168 loc) · 6.44 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import gc
import queue
from typing import Generator
import numpy as np
import torch
from loguru import logger
from fish_speech.inference_engine.reference_loader import ReferenceLoader
from fish_speech.inference_engine.utils import InferenceResult, wav_chunk_header
from fish_speech.inference_engine.vq_manager import VQManager
from fish_speech.models.text2semantic.inference import (
GenerateRequest,
GenerateResponse,
WrappedGenerateResponse,
)
from fish_speech.models.vqgan.modules.firefly import FireflyArchitecture
from fish_speech.text.chn_text_norm.text import Text as ChnNormedText
from fish_speech.utils import autocast_exclude_mps, set_seed
from fish_speech.utils.schema import ServeTTSRequest
class TTSInferenceEngine(ReferenceLoader, VQManager):
def __init__(
self,
llama_queue: queue.Queue,
decoder_model: FireflyArchitecture,
precision: torch.dtype,
compile: bool,
) -> None:
super().__init__()
self.llama_queue = llama_queue
self.decoder_model = decoder_model
self.precision = precision
self.compile = compile
@torch.inference_mode()
def inference(self, req: ServeTTSRequest) -> Generator[InferenceResult, None, None]:
"""
Main inference function:
- Loads the reference audio and text.
- Calls the LLAMA model for inference.
- Decodes the VQ tokens to audio.
"""
ref_id: str | None = req.reference_id
prompt_tokens, prompt_texts = [], []
# Load the reference audio and text based on id, hash, or preprocessed references
if ref_id is not None:
prompt_tokens, prompt_texts = self.load_by_id(ref_id, req.use_memory_cache)
elif req.references:
prompt_tokens, prompt_texts = self.load_by_hash(
req.references, req.use_memory_cache
)
elif req.preprocessed_references:
prompt_tokens = [ref.tokens for ref in req.preprocessed_references]
prompt_texts = [ref.text for ref in req.preprocessed_references]
# Set the random seed if provided
if req.seed is not None:
set_seed(req.seed)
logger.warning(f"set seed: {req.seed}")
# Get the symbolic tokens from the LLAMA model
response_queue = self.send_Llama_request(req, prompt_tokens, prompt_texts)
# Get the sample rate from the decoder model
sample_rate = self.decoder_model.spec_transform.sample_rate
# If streaming, send the header
if req.streaming:
yield InferenceResult(
code="header",
audio=(
sample_rate,
np.array(wav_chunk_header(sample_rate=sample_rate)),
),
error=None,
)
segments = []
while True:
# Get the response from the LLAMA model
wrapped_result: WrappedGenerateResponse = response_queue.get()
if wrapped_result.status == "error":
yield InferenceResult(
code="error",
audio=None,
error=(
wrapped_result.response
if isinstance(wrapped_result.response, Exception)
else Exception("Unknown error")
),
)
break
# Check the response type
if not isinstance(wrapped_result.response, GenerateResponse):
raise TypeError(
"Expected GenerateResponse, got {type(wrapped_result.response).__name__}"
)
result: GenerateResponse = wrapped_result.response
if result.action != "next":
segment = self.get_audio_segment(result)
if req.streaming:
yield InferenceResult(
code="segment",
audio=(sample_rate, segment),
error=None,
)
segments.append(segment)
else:
break
# Clean up the memory
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
# Edge case: no audio generated
if len(segments) == 0:
yield InferenceResult(
code="error",
audio=None,
error=RuntimeError("No audio generated, please check the input text."),
)
else:
# Streaming or not, return the final audio
audio = np.concatenate(segments, axis=0)
yield InferenceResult(
code="final",
audio=(sample_rate, audio),
error=None,
)
return None
def send_Llama_request(
self, req: ServeTTSRequest, prompt_tokens: list, prompt_texts: list
) -> queue.Queue:
"""
Send a request to the LLAMA model to generate the symbolic tokens.
"""
# Prepare the request
request = dict(
device=self.decoder_model.device,
max_new_tokens=req.max_new_tokens,
text=(
req.text
if not req.normalize
else ChnNormedText(raw_text=req.text).normalize()
),
top_p=req.top_p,
repetition_penalty=req.repetition_penalty,
temperature=req.temperature,
compile=self.compile,
iterative_prompt=req.chunk_length > 0,
chunk_length=req.chunk_length,
max_length=4096,
prompt_tokens=prompt_tokens,
prompt_text=prompt_texts,
)
# Create a queue to get the response
response_queue = queue.Queue()
# Send the request to the LLAMA model
self.llama_queue.put(
GenerateRequest(
request=request,
response_queue=response_queue,
)
)
return response_queue
def get_audio_segment(self, result: GenerateResponse) -> np.ndarray:
"""
Decode the VQ tokens to audio.
"""
# Don't use autocast on MPS devices
with autocast_exclude_mps(
device_type=self.decoder_model.device.type, dtype=self.precision
):
# Decode the symbolic tokens to audio
segment = self.decode_vq_tokens(codes=result.codes)
# Convert the audio to numpy
return segment.float().cpu().numpy()