forked from raspberrypi/pico-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patholed_i2c.c
298 lines (237 loc) · 9.85 KB
/
oled_i2c.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
/**
* Copyright (c) 2021 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "pico/stdlib.h"
#include "pico/binary_info.h"
#include "hardware/i2c.h"
#include "raspberry26x32.h"
/* Example code to talk to an SSD1306-based OLED display
NOTE: Ensure the device is capable of being driven at 3.3v NOT 5v. The Pico
GPIO (and therefore I2C) cannot be used at 5v.
You will need to use a level shifter on the I2C lines if you want to run the
board at 5v.
Connections on Raspberry Pi Pico board, other boards may vary.
GPIO PICO_DEFAULT_I2C_SDA_PIN (on Pico this is GP4 (pin 6)) -> SDA on display
board
GPIO PICO_DEFAULT_I2C_SCK_PIN (on Pico this is GP5 (pin 7)) -> SCL on
display board
3.3v (pin 36) -> VCC on display board
GND (pin 38) -> GND on display board
*/
// commands (see datasheet)
#define OLED_SET_CONTRAST _u(0x81)
#define OLED_SET_ENTIRE_ON _u(0xA4)
#define OLED_SET_NORM_INV _u(0xA6)
#define OLED_SET_DISP _u(0xAE)
#define OLED_SET_MEM_ADDR _u(0x20)
#define OLED_SET_COL_ADDR _u(0x21)
#define OLED_SET_PAGE_ADDR _u(0x22)
#define OLED_SET_DISP_START_LINE _u(0x40)
#define OLED_SET_SEG_REMAP _u(0xA0)
#define OLED_SET_MUX_RATIO _u(0xA8)
#define OLED_SET_COM_OUT_DIR _u(0xC0)
#define OLED_SET_DISP_OFFSET _u(0xD3)
#define OLED_SET_COM_PIN_CFG _u(0xDA)
#define OLED_SET_DISP_CLK_DIV _u(0xD5)
#define OLED_SET_PRECHARGE _u(0xD9)
#define OLED_SET_VCOM_DESEL _u(0xDB)
#define OLED_SET_CHARGE_PUMP _u(0x8D)
#define OLED_SET_HORIZ_SCROLL _u(0x26)
#define OLED_SET_SCROLL _u(0x2E)
#define OLED_ADDR _u(0x3C)
#define OLED_HEIGHT _u(32)
#define OLED_WIDTH _u(128)
#define OLED_PAGE_HEIGHT _u(8)
#define OLED_NUM_PAGES OLED_HEIGHT / OLED_PAGE_HEIGHT
#define OLED_BUF_LEN (OLED_NUM_PAGES * OLED_WIDTH)
#define OLED_WRITE_MODE _u(0xFE)
#define OLED_READ_MODE _u(0xFF)
struct render_area {
uint8_t start_col;
uint8_t end_col;
uint8_t start_page;
uint8_t end_page;
int buflen;
};
void fill(uint8_t buf[], uint8_t fill) {
// fill entire buffer with the same byte
for (int i = 0; i < OLED_BUF_LEN; i++) {
buf[i] = fill;
}
};
void fill_page(uint8_t *buf, uint8_t fill, uint8_t page) {
// fill entire page with the same byte
memset(buf + (page * OLED_WIDTH), fill, OLED_WIDTH);
};
// convenience methods for printing out a buffer to be rendered
// mostly useful for debugging images, patterns, etc
void print_buf_page(uint8_t buf[], uint8_t page) {
// prints one page of a full length (128x4) buffer
for (int j = 0; j < OLED_PAGE_HEIGHT; j++) {
for (int k = 0; k < OLED_WIDTH; k++) {
printf("%u", (buf[page * OLED_WIDTH + k] >> j) & 0x01);
}
printf("\n");
}
}
void print_buf_pages(uint8_t buf[]) {
// prints all pages of a full length buffer
for (int i = 0; i < OLED_NUM_PAGES; i++) {
printf("--page %d--\n", i);
print_buf_page(buf, i);
}
}
void print_buf_area(uint8_t *buf, struct render_area *area) {
// print a render area of generic size
int area_width = area->end_col - area->start_col + 1;
int area_height = area->end_page - area->start_page + 1; // in pages, not pixels
for (int i = 0; i < area_height; i++) {
for (int j = 0; j < OLED_PAGE_HEIGHT; j++) {
for (int k = 0; k < area_width; k++) {
printf("%u", (buf[i * area_width + k] >> j) & 0x01);
}
printf("\n");
}
}
}
void calc_render_area_buflen(struct render_area *area) {
// calculate how long the flattened buffer will be for a render area
area->buflen = (area->end_col - area->start_col + 1) * (area->end_page - area->start_page + 1);
}
#ifdef i2c_default
void oled_send_cmd(uint8_t cmd) {
// I2C write process expects a control byte followed by data
// this "data" can be a command or data to follow up a command
// Co = 1, D/C = 0 => the driver expects a command
uint8_t buf[2] = {0x80, cmd};
i2c_write_blocking(i2c_default, (OLED_ADDR & OLED_WRITE_MODE), buf, 2, false);
}
void oled_send_buf(uint8_t buf[], int buflen) {
// in horizontal addressing mode, the column address pointer auto-increments
// and then wraps around to the next page, so we can send the entire frame
// buffer in one gooooooo!
// copy our frame buffer into a new buffer because we need to add the control byte
// to the beginning
// TODO find a more memory-efficient way to do this..
// maybe break the data transfer into pages?
uint8_t *temp_buf = malloc(buflen + 1);
for (int i = 1; i < buflen + 1; i++) {
temp_buf[i] = buf[i - 1];
}
// Co = 0, D/C = 1 => the driver expects data to be written to RAM
temp_buf[0] = 0x40;
i2c_write_blocking(i2c_default, (OLED_ADDR & OLED_WRITE_MODE), temp_buf, buflen + 1, false);
free(temp_buf);
}
void oled_init() {
// some of these commands are not strictly necessary as the reset
// process defaults to some of these but they are shown here
// to demonstrate what the initialization sequence looks like
// some configuration values are recommended by the board manufacturer
oled_send_cmd(OLED_SET_DISP | 0x00); // set display off
/* memory mapping */
oled_send_cmd(OLED_SET_MEM_ADDR); // set memory address mode
oled_send_cmd(0x00); // horizontal addressing mode
/* resolution and layout */
oled_send_cmd(OLED_SET_DISP_START_LINE); // set display start line to 0
oled_send_cmd(OLED_SET_SEG_REMAP | 0x01); // set segment re-map
// column address 127 is mapped to SEG0
oled_send_cmd(OLED_SET_MUX_RATIO); // set multiplex ratio
oled_send_cmd(OLED_HEIGHT - 1); // our display is only 32 pixels high
oled_send_cmd(OLED_SET_COM_OUT_DIR | 0x08); // set COM (common) output scan direction
// scan from bottom up, COM[N-1] to COM0
oled_send_cmd(OLED_SET_DISP_OFFSET); // set display offset
oled_send_cmd(0x00); // no offset
oled_send_cmd(OLED_SET_COM_PIN_CFG); // set COM (common) pins hardware configuration
oled_send_cmd(0x02); // manufacturer magic number
/* timing and driving scheme */
oled_send_cmd(OLED_SET_DISP_CLK_DIV); // set display clock divide ratio
oled_send_cmd(0x80); // div ratio of 1, standard freq
oled_send_cmd(OLED_SET_PRECHARGE); // set pre-charge period
oled_send_cmd(0xF1); // Vcc internally generated on our board
oled_send_cmd(OLED_SET_VCOM_DESEL); // set VCOMH deselect level
oled_send_cmd(0x30); // 0.83xVcc
/* display */
oled_send_cmd(OLED_SET_CONTRAST); // set contrast control
oled_send_cmd(0xFF);
oled_send_cmd(OLED_SET_ENTIRE_ON); // set entire display on to follow RAM content
oled_send_cmd(OLED_SET_NORM_INV); // set normal (not inverted) display
oled_send_cmd(OLED_SET_CHARGE_PUMP); // set charge pump
oled_send_cmd(0x14); // Vcc internally generated on our board
oled_send_cmd(OLED_SET_SCROLL | 0x00); // deactivate horizontal scrolling if set
// this is necessary as memory writes will corrupt if scrolling was enabled
oled_send_cmd(OLED_SET_DISP | 0x01); // turn display on
}
void render(uint8_t *buf, struct render_area *area) {
// update a portion of the display with a render area
oled_send_cmd(OLED_SET_COL_ADDR);
oled_send_cmd(area->start_col);
oled_send_cmd(area->end_col);
oled_send_cmd(OLED_SET_PAGE_ADDR);
oled_send_cmd(area->start_page);
oled_send_cmd(area->end_page);
oled_send_buf(buf, area->buflen);
}
#endif
int main() {
stdio_init_all();
#if !defined(i2c_default) || !defined(PICO_DEFAULT_I2C_SDA_PIN) || !defined(PICO_DEFAULT_I2C_SCL_PIN)
#warning i2c / oled_i2d example requires a board with I2C pins
puts("Default I2C pins were not defined");
#else
// useful information for picotool
bi_decl(bi_2pins_with_func(PICO_DEFAULT_I2C_SDA_PIN, PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C));
bi_decl(bi_program_description("OLED I2C example for the Raspberry Pi Pico"));
printf("Hello, OLED display! Look at my raspberries..\n");
// I2C is "open drain", pull ups to keep signal high when no data is being
// sent
i2c_init(i2c_default, 400 * 1000);
gpio_set_function(PICO_DEFAULT_I2C_SDA_PIN, GPIO_FUNC_I2C);
gpio_set_function(PICO_DEFAULT_I2C_SCL_PIN, GPIO_FUNC_I2C);
gpio_pull_up(PICO_DEFAULT_I2C_SDA_PIN);
gpio_pull_up(PICO_DEFAULT_I2C_SCL_PIN);
// run through the complete initialization process
oled_init();
// initialize render area for entire frame (128 pixels by 4 pages)
struct render_area frame_area = {start_col: 0, end_col : OLED_WIDTH - 1, start_page : 0, end_page : OLED_NUM_PAGES -
1};
calc_render_area_buflen(&frame_area);
// zero the entire display
uint8_t buf[OLED_BUF_LEN];
fill(buf, 0x00);
render(buf, &frame_area);
// intro sequence: flash the screen 3 times
for (int i = 0; i < 3; i++) {
oled_send_cmd(0xA5); // ignore RAM, all pixels on
sleep_ms(500);
oled_send_cmd(0xA4); // go back to following RAM
sleep_ms(500);
}
// render 3 cute little raspberries
struct render_area area = {start_col: 0, end_col : IMG_WIDTH - 1, start_page : 0, end_page : OLED_NUM_PAGES - 1};
calc_render_area_buflen(&area);
render(raspberry26x32, &area);
for (int i = 1; i < 3; i++) {
uint8_t offset = 5 + IMG_WIDTH; // 5px padding
area.start_col += offset;
area.end_col += offset;
render(raspberry26x32, &area);
}
// configure horizontal scrolling
oled_send_cmd(OLED_SET_HORIZ_SCROLL | 0x00);
oled_send_cmd(0x00); // dummy byte
oled_send_cmd(0x00); // start page 0
oled_send_cmd(0x00); // time interval
oled_send_cmd(0x03); // end page 3
oled_send_cmd(0x00); // dummy byte
oled_send_cmd(0xFF); // dummy byte
// let's goooo!
oled_send_cmd(OLED_SET_SCROLL | 0x01);
#endif
return 0;
}