13
13
from harmony_service_lib .message import Source as HarmonySource
14
14
from matplotlib .cm import ScalarMappable
15
15
from matplotlib .colors import Normalize
16
- from numpy import ndarray
16
+ from numpy import ndarray , uint8
17
17
from osgeo_utils .auxiliary .color_palette import ColorPalette
18
18
from PIL import Image
19
19
from rasterio .io import DatasetReader
@@ -181,7 +181,9 @@ def create_browse_imagery(
181
181
f'incorrect number of bands for image: { rio_in_array .rio .count } '
182
182
)
183
183
184
- raster , color_map = prepare_raster_for_writing (raster , output_driver )
184
+ raster , color_map = standardize_raster_for_writing (
185
+ raster , output_driver , rio_in_array .rio .count
186
+ )
185
187
186
188
grid_parameters = get_target_grid_parameters (message , rio_in_array )
187
189
grid_parameter_list , tile_locators = create_tiled_output_parameters (
@@ -217,12 +219,14 @@ def create_browse_imagery(
217
219
return processed_files
218
220
219
221
220
- def convert_mulitband_to_raster (data_array : DataArray ) -> ndarray :
222
+ def convert_mulitband_to_raster (data_array : DataArray ) -> ndarray [ uint8 ] :
221
223
"""Convert multiband to a raster image.
222
224
223
- Reads the three or four bands from the file, then normalizes them to the range
224
- 0 to 255. This assumes the input image is already in RGB or RGBA format and
225
- just ensures that the output is 8bit.
225
+ Return a 4-band raster, where the alpha layer is presumed to be the missing
226
+ data mask.
227
+
228
+ Convert 3-band data into a 4-band raster by generating an alpha layer from
229
+ any missing data in the RGB bands.
226
230
227
231
"""
228
232
if data_array .rio .count not in [3 , 4 ]:
@@ -233,26 +237,49 @@ def convert_mulitband_to_raster(data_array: DataArray) -> ndarray:
233
237
234
238
bands = data_array .to_numpy ()
235
239
236
- # Create an alpha layer where input NaN values are transparent.
240
+ if data_array .rio .count == 4 :
241
+ return convert_to_uint8 (bands , original_dtype (data_array ))
242
+
243
+ # Input NaNs in any of the RGB bands are made transparent.
237
244
nan_mask = np .isnan (bands ).any (axis = 0 )
238
245
nan_alpha = np .where (nan_mask , TRANSPARENT , OPAQUE )
239
246
240
- # grab any existing alpha layer
241
- bands , image_alpha = remove_alpha (bands )
247
+ raster = convert_to_uint8 (bands , original_dtype (data_array ))
242
248
243
- norm = Normalize (vmin = np .nanmin (bands ), vmax = np .nanmax (bands ))
244
- raster = np .nan_to_num (np .around (norm (bands ) * 255.0 ), copy = False , nan = 0.0 ).astype (
245
- 'uint8'
246
- )
249
+ return np .concatenate ((raster , nan_alpha [None , ...]), axis = 0 )
250
+
251
+
252
+ def convert_to_uint8 (bands : ndarray , dtype : str | None ) -> ndarray [uint8 ]:
253
+ """Convert Banded data with NaNs (missing) into a uint8 data cube.
254
+
255
+ Nearly all of the time this will simply pass through the data coercing it
256
+ back into unsigned ints and setting the missing values to 0 that will be
257
+ masked as transparent in the output png.
247
258
248
- if image_alpha is not None :
249
- # merge missing alpha with the image alpha band prefering transparency
250
- # to opaqueness.
251
- alpha = np .minimum (nan_alpha , image_alpha ).astype (np .uint8 )
259
+ There is a some small non-zero chance that the input RGB image was 16-bit
260
+ and if any of the values exceed 255, we must normalize all of input data to
261
+ the range 0-255.
262
+
263
+ """
264
+
265
+ if dtype != 'uint8' and np .nanmax (bands ) > 255 :
266
+ norm = Normalize (vmin = np .nanmin (bands ), vmax = np .nanmax (bands ))
267
+ scaled = np .around (norm (bands ) * 255.0 )
268
+ raster = scaled .filled (0 ).astype ('uint8' )
252
269
else :
253
- alpha = nan_alpha
270
+ raster = np .nan_to_num (bands ).astype ('uint8' )
271
+
272
+ return raster
254
273
255
- return np .concatenate ((raster , alpha [None , ...]), axis = 0 )
274
+
275
+ def original_dtype (data_array : DataArray ) -> str | None :
276
+ """Return the original input data's type.
277
+
278
+ rastero_open retains the input dtype in the encoding dictionary and is used
279
+ to understand what kind of casts are safe.
280
+
281
+ """
282
+ return data_array .encoding .get ('dtype' ) or data_array .encoding .get ('rasterio_dtype' )
256
283
257
284
258
285
def convert_singleband_to_raster (
@@ -330,16 +357,38 @@ def image_driver(mime: str) -> str:
330
357
return 'PNG'
331
358
332
359
333
- def prepare_raster_for_writing (
334
- raster : ndarray , driver : str
360
+ def standardize_raster_for_writing (
361
+ raster : ndarray ,
362
+ driver : str ,
363
+ band_count : int ,
335
364
) -> tuple [ndarray , dict | None ]:
336
- """Remove alpha layer if writing a jpeg."""
337
- if driver == 'JPEG' :
338
- if raster .shape [0 ] == 4 :
339
- raster = raster [0 :3 , :, :]
340
- return raster , None
365
+ """Standardize raster data for writing to browse image.
341
366
342
- return palettize_raster (raster )
367
+ Args:
368
+ raster: Input raster data array
369
+ driver: Output image format ('JPEG' or 'PNG')
370
+ band_count: Number of bands in original input data
371
+
372
+ The function handles two special cases:
373
+ - JPEG output with 4-band data -> Drop alpha channel and return 3-band RGB
374
+ - PNG output with single-band data -> Convert to paletted format
375
+
376
+ Returns:
377
+ tuple: (prepared_raster, color_map) where:
378
+ - prepared_raster is the processed ndarray
379
+ - color_map is either None or a dict mapping palette indices to RGBA values
380
+
381
+
382
+ """
383
+ if driver == 'JPEG' and raster .shape [0 ] == 4 :
384
+ return raster [0 :3 , :, :], None
385
+
386
+ if driver == 'PNG' and band_count == 1 :
387
+ # Only palettize single band input data that has been converted to an
388
+ # RGBA raster.
389
+ return palettize_raster (raster )
390
+
391
+ return raster , None
343
392
344
393
345
394
def palettize_raster (raster : ndarray ) -> tuple [ndarray , dict ]:
@@ -476,9 +525,13 @@ def write_georaster_as_browse(
476
525
477
526
"""
478
527
n_bands = raster .shape [0 ]
479
- dst_nodata = NODATA_IDX
528
+
480
529
if color_map is not None :
530
+ dst_nodata = NODATA_IDX
481
531
color_map [dst_nodata ] = NODATA_RGBA
532
+ else :
533
+ # for banded data set the each band's destination nodata to zero (TRANSPARENT).
534
+ dst_nodata = TRANSPARENT
482
535
483
536
creation_options = {
484
537
** grid_parameters ,
0 commit comments