-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSpatialConvolutionMM.lua
104 lines (90 loc) · 3.03 KB
/
SpatialConvolutionMM.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
local SpatialConvolutionMM, parent = torch.class('nn.SpatialConvolutionMM', 'nn.Module')
function SpatialConvolutionMM:__init(nInputPlane, nOutputPlane, kW, kH, dW, dH, padW, padH)
parent.__init(self)
dW = dW or 1
dH = dH or 1
self.nInputPlane = nInputPlane
self.nOutputPlane = nOutputPlane
self.kW = kW
self.kH = kH
self.dW = dW
self.dH = dH
self.padW = padW or 0
self.padH = padH or self.padW
self.weight = torch.Tensor(nOutputPlane, nInputPlane*kH*kW)
self.bias = torch.Tensor(nOutputPlane)
self.gradWeight = torch.Tensor(nOutputPlane, nInputPlane*kH*kW)
self.gradBias = torch.Tensor(nOutputPlane)
self.finput = torch.Tensor()
self.fgradInput = torch.Tensor()
self:reset()
end
function SpatialConvolutionMM:reset(stdv)
if stdv then
stdv = stdv * math.sqrt(3)
else
stdv = 1/math.sqrt(self.kW*self.kH*self.nInputPlane)
end
if nn.oldSeed then
self.weight:apply(function()
return torch.uniform(-stdv, stdv)
end)
self.bias:apply(function()
return torch.uniform(-stdv, stdv)
end)
else
self.weight:uniform(-stdv, stdv)
self.bias:uniform(-stdv, stdv)
end
end
local function makeContiguous(self, input, gradOutput)
if not input:isContiguous() then
self._input = self._input or input.new()
self._input:resizeAs(input):copy(input)
input = self._input
end
if gradOutput then
if not gradOutput:isContiguous() then
self._gradOutput = self._gradOutput or gradOutput.new()
self._gradOutput:resizeAs(gradOutput):copy(gradOutput)
gradOutput = self._gradOutput
end
end
return input, gradOutput
end
function SpatialConvolutionMM:updateOutput(input)
-- backward compatibility
if self.padding then
self.padW = self.padding
self.padH = self.padding
self.padding = nil
end
input = makeContiguous(self, input)
return input.nn.SpatialConvolutionMM_updateOutput(self, input)
end
function SpatialConvolutionMM:updateGradInput(input, gradOutput)
if self.gradInput then
input, gradOutput = makeContiguous(self, input, gradOutput)
return input.nn.SpatialConvolutionMM_updateGradInput(self, input, gradOutput)
end
end
function SpatialConvolutionMM:accGradParameters(input, gradOutput, scale)
input, gradOutput = makeContiguous(self, input, gradOutput)
return input.nn.SpatialConvolutionMM_accGradParameters(self, input, gradOutput, scale)
end
function SpatialConvolutionMM:type(type)
self.finput = torch.Tensor()
self.fgradInput = torch.Tensor()
return parent.type(self,type)
end
function SpatialConvolutionMM:__tostring__()
local s = string.format('%s(%d -> %d, %dx%d', torch.type(self),
self.nInputPlane, self.nOutputPlane, self.kW, self.kH)
if self.dW ~= 1 or self.dH ~= 1 or self.padW ~= 0 or self.padH ~= 0 then
s = s .. string.format(', %d,%d', self.dW, self.dH)
end
if (self.padW or self.padH) and (self.padW ~= 0 or self.padH ~= 0) then
s = s .. ', ' .. self.padW .. ',' .. self.padH
end
return s .. ')'
end