-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlab2_problem1.py
157 lines (129 loc) · 4.3 KB
/
lab2_problem1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import gym
import torch
from pathlib import Path
from el2805.agents.rl import DQN
from el2805.agents.rl.utils import get_device
from utils import plot_training_stats, analyze_lunar_lander_agent, analyze_hyperparameter, compare_rl_agent_with_random
N_TRAIN_EPISODES = 1000
SEED = 1
EARLY_STOP_REWARD = 250
REPLAY_BUFFER_SIZE = 10000
BATCH_SIZE = 64
AGENT_CONFIG = {
"seed": 1,
"environment": gym.make("LunarLander-v2"),
"discount": .99,
"epsilon": "exponential",
"epsilon_max": .99,
"epsilon_min": .05,
"epsilon_decay_duration": int(.9 * N_TRAIN_EPISODES),
"learning_rate": 5e-4,
"batch_size": BATCH_SIZE,
"replay_buffer_size": REPLAY_BUFFER_SIZE,
"replay_buffer_min": int(.2 * REPLAY_BUFFER_SIZE),
"target_update_period": REPLAY_BUFFER_SIZE // BATCH_SIZE,
"hidden_layer_sizes": [64, 64],
"hidden_layer_activation": "relu",
"gradient_max_norm": 1,
"cer": True,
"dueling": False,
"device": get_device(),
}
def task_c(results_dir, agent_path):
results_dir.mkdir(parents=True, exist_ok=True)
# Train agent
agent = DQN(**AGENT_CONFIG)
training_stats = agent.train(
n_episodes=N_TRAIN_EPISODES,
early_stop_reward=EARLY_STOP_REWARD
)
# Save results
agent.save(agent_path)
torch.save(agent.q_network, results_dir / "neural-network-1.pth")
plot_training_stats(training_stats, results_dir)
def task_e2(results_dir):
results_dir.mkdir(parents=True, exist_ok=True)
analyze_hyperparameter(
agent_class=DQN,
agent_config=AGENT_CONFIG,
hyperparameter_name="discount",
hyperparameter_values=[0.5, 0.99, 1],
n_train_episodes=N_TRAIN_EPISODES,
early_stop_reward=EARLY_STOP_REWARD,
results_dir=results_dir
)
def task_e3(results_dir):
results_dir.mkdir(parents=True, exist_ok=True)
# Effect of number of episodes
# results_dir_tmp = results_dir / "n_episodes"
# results_dir_tmp.mkdir(parents=True, exist_ok=True)
# agent = DQN(**AGENT_CONFIG)
# training_stats = agent.train(
# n_episodes=5000,
# early_stop_reward=None
# )
# plot_training_stats(training_stats, results_dir_tmp)
# Effect of memory size
results_dir_tmp = results_dir / "replay_buffer_size"
results_dir_tmp.mkdir(parents=True, exist_ok=True)
analyze_hyperparameter(
agent_class=DQN,
agent_config=AGENT_CONFIG,
hyperparameter_name="replay_buffer_size",
hyperparameter_values=[1000, 10000, 100000],
n_train_episodes=N_TRAIN_EPISODES,
early_stop_reward=EARLY_STOP_REWARD,
results_dir=results_dir_tmp
)
def task_f(results_dir, agent_path):
results_dir.mkdir(parents=True, exist_ok=True)
agent = DQN.load(agent_path)
def v(states):
q = agent.q_network(states)
v_ = q.max(dim=1).values
return v_
def policy(states):
q = agent.q_network(states)
actions_ = q.argmax(dim=1)
return actions_
analyze_lunar_lander_agent(
agent_function=v,
environment=agent.environment,
z_label=r"$V_{\theta}(s)$",
filepath=results_dir / "value_function.pdf"
)
analyze_lunar_lander_agent(
agent_function=policy,
environment=agent.environment,
z_label=r"$\pi_{\theta}(s)$",
filepath=results_dir / "policy.pdf"
)
def task_g(results_dir, agent_path):
results_dir.mkdir(parents=True, exist_ok=True)
compare_rl_agent_with_random(
agent_path=agent_path,
agent_name="dqn",
n_episodes=50,
seed=SEED,
results_dir=results_dir
)
def main():
results_dir = Path(__file__).parent.parent / "results" / "lab2" / "problem1"
agent_path = results_dir / "task_c" / "dqn.pickle"
print("Task (c)")
task_c(results_dir / "task_c", agent_path)
print()
print("Task (e2)")
task_e2(results_dir / "task_e2")
print()
print("Task (e3)")
task_e3(results_dir / "task_e3")
print()
print("Task (f)")
task_f(results_dir / "task_f", agent_path)
print()
print("Task (g)")
task_g(results_dir / "task_g", agent_path)
print()
if __name__ == "__main__":
main()