-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlab2_problem3.py
138 lines (112 loc) · 3.75 KB
/
lab2_problem3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import gym
import torch
from pathlib import Path
from el2805.agents.rl import PPO
from el2805.agents.rl.utils import get_device
from utils import plot_training_stats, analyze_lunar_lander_agent, analyze_hyperparameter, compare_rl_agent_with_random
SEED = 1
N_TRAIN_EPISODES = 1600
EARLY_STOP_REWARD = 250
AGENT_CONFIG = {
"seed": SEED,
"environment": gym.make("LunarLanderContinuous-v2"),
"discount": .99,
"n_epochs_per_step": 10,
"epsilon": .2,
"critic_learning_rate": 1e-3,
"critic_hidden_layer_sizes": [400, 200],
"critic_hidden_layer_activation": "relu",
"actor_learning_rate": 1e-5,
"actor_shared_hidden_layer_sizes": [400],
"actor_mean_hidden_layer_sizes": [200],
"actor_var_hidden_layer_sizes": [200],
"actor_hidden_layer_activation": "relu",
"gradient_max_norm": 1,
"device": get_device(),
}
def task_c(results_dir, agent_path):
results_dir.mkdir(parents=True, exist_ok=True)
# Train agent
agent = PPO(**AGENT_CONFIG)
training_stats = agent.train(
n_episodes=N_TRAIN_EPISODES,
early_stop_reward=EARLY_STOP_REWARD
)
# Save results
agent.save(agent_path)
torch.save(agent.actor, results_dir / "neural-network-3-actor.pth")
torch.save(agent.critic, results_dir / "neural-network-3-critic.pth")
plot_training_stats(training_stats, results_dir)
def task_e2(results_dir):
results_dir.mkdir(parents=True, exist_ok=True)
analyze_hyperparameter(
agent_class=PPO,
agent_config=AGENT_CONFIG,
hyperparameter_name="discount",
hyperparameter_values=[0.5, 0.99, 1],
n_train_episodes=N_TRAIN_EPISODES,
early_stop_reward=EARLY_STOP_REWARD,
results_dir=results_dir
)
def task_e3(results_dir):
results_dir.mkdir(parents=True, exist_ok=True)
analyze_hyperparameter(
agent_class=PPO,
agent_config=AGENT_CONFIG,
hyperparameter_name="epsilon",
hyperparameter_values=[0.01, 0.2, 0.5],
n_train_episodes=N_TRAIN_EPISODES,
early_stop_reward=EARLY_STOP_REWARD,
results_dir=results_dir
)
def task_f(results_dir, agent_path):
results_dir.mkdir(parents=True, exist_ok=True)
agent = PPO.load(agent_path)
def v(states):
v_ = agent.critic(states)
return v_
def mean_side_engine(states):
mean, _ = agent.actor(states)
mean_side_engine_ = mean[:, 1]
return mean_side_engine_
analyze_lunar_lander_agent(
agent_function=v,
environment=agent.environment,
z_label=r"$V_{\omega}(s)$",
filepath=results_dir / "critic.pdf"
)
analyze_lunar_lander_agent(
agent_function=mean_side_engine,
environment=agent.environment,
z_label=r"$\mu_{\theta,2}(s)$",
filepath=results_dir / "actor.pdf"
)
def task_g(results_dir, agent_path):
results_dir.mkdir(parents=True, exist_ok=True)
compare_rl_agent_with_random(
agent_path=agent_path,
agent_name="ppo",
n_episodes=50,
seed=SEED,
results_dir=results_dir
)
def main():
results_dir = Path(__file__).parent.parent / "results" / "lab2" / "problem3"
agent_path = results_dir / "task_c" / "ppo.pickle"
print("Task (c)")
task_c(results_dir / "task_c", agent_path)
print()
print("Task (e2)")
task_e2(results_dir / "task_e2")
print()
print("Task (e3)")
task_e3(results_dir / "task_e3")
print()
print("Task (f)")
task_f(results_dir / "task_f", agent_path)
print()
print("Task (g)")
task_g(results_dir / "task_g", agent_path)
print()
if __name__ == "__main__":
main()