|
| 1 | +"""Veotools command-line interface (no extra deps). |
| 2 | +
|
| 3 | +Usage examples: |
| 4 | + veo preflight |
| 5 | + veo list-models --remote |
| 6 | + veo generate --prompt "cat riding a hat" --model veo-3.0-fast-generate-preview |
| 7 | + veo continue --video dog.mp4 --prompt "the dog finds a treasure chest" --overlap 1.0 |
| 8 | +""" |
| 9 | + |
| 10 | +from __future__ import annotations |
| 11 | + |
| 12 | +import argparse |
| 13 | +import json |
| 14 | +from pathlib import Path |
| 15 | +from typing import Any, Dict, Optional |
| 16 | + |
| 17 | +import veotools as veo |
| 18 | + |
| 19 | + |
| 20 | +def _print_progress(message: str, percent: int): |
| 21 | + bar_length = 24 |
| 22 | + filled = int(bar_length * percent / 100) |
| 23 | + bar = "#" * filled + "-" * (bar_length - filled) |
| 24 | + print(f"[{bar}] {percent:3d}% {message}", end="\r") |
| 25 | + if percent >= 100: |
| 26 | + print() |
| 27 | + |
| 28 | + |
| 29 | +def cmd_preflight(_: argparse.Namespace) -> int: |
| 30 | + veo.init() |
| 31 | + data = veo.preflight() |
| 32 | + print(json.dumps(data, indent=2)) |
| 33 | + return 0 |
| 34 | + |
| 35 | + |
| 36 | +def cmd_list_models(ns: argparse.Namespace) -> int: |
| 37 | + veo.init() |
| 38 | + data = veo.list_models(include_remote=ns.remote) |
| 39 | + if ns.json: |
| 40 | + print(json.dumps(data, indent=2)) |
| 41 | + else: |
| 42 | + for m in data.get("models", []): |
| 43 | + print(m.get("id")) |
| 44 | + return 0 |
| 45 | + |
| 46 | + |
| 47 | +def cmd_generate(ns: argparse.Namespace) -> int: |
| 48 | + veo.init() |
| 49 | + kwargs: Dict[str, Any] = {} |
| 50 | + if ns.model: |
| 51 | + kwargs["model"] = ns.model |
| 52 | + if ns.image: |
| 53 | + result = veo.generate_from_image( |
| 54 | + image_path=Path(ns.image), |
| 55 | + prompt=ns.prompt, |
| 56 | + on_progress=_print_progress, |
| 57 | + ) |
| 58 | + elif ns.video: |
| 59 | + result = veo.generate_from_video( |
| 60 | + video_path=Path(ns.video), |
| 61 | + prompt=ns.prompt, |
| 62 | + extract_at=ns.extract_at, |
| 63 | + on_progress=_print_progress, |
| 64 | + **kwargs, |
| 65 | + ) |
| 66 | + else: |
| 67 | + result = veo.generate_from_text( |
| 68 | + ns.prompt, |
| 69 | + on_progress=_print_progress, |
| 70 | + **kwargs, |
| 71 | + ) |
| 72 | + if ns.json: |
| 73 | + print(json.dumps(result.to_dict(), indent=2)) |
| 74 | + else: |
| 75 | + print(result.path) |
| 76 | + return 0 |
| 77 | + |
| 78 | + |
| 79 | +def cmd_continue(ns: argparse.Namespace) -> int: |
| 80 | + veo.init() |
| 81 | + # Generate continuation |
| 82 | + gen = veo.generate_from_video( |
| 83 | + video_path=Path(ns.video), |
| 84 | + prompt=ns.prompt, |
| 85 | + extract_at=ns.extract_at, |
| 86 | + model=ns.model, |
| 87 | + on_progress=_print_progress, |
| 88 | + ) |
| 89 | + # Stitch with original |
| 90 | + stitched = veo.stitch_videos([Path(ns.video), Path(gen.path)], overlap=ns.overlap) |
| 91 | + if ns.json: |
| 92 | + out = { |
| 93 | + "generated": gen.to_dict(), |
| 94 | + "stitched": stitched.to_dict(), |
| 95 | + } |
| 96 | + print(json.dumps(out, indent=2)) |
| 97 | + else: |
| 98 | + print(stitched.path) |
| 99 | + return 0 |
| 100 | + |
| 101 | + |
| 102 | +def build_parser() -> argparse.ArgumentParser: |
| 103 | + p = argparse.ArgumentParser(prog="veo", description="Veotools CLI") |
| 104 | + sub = p.add_subparsers(dest="cmd", required=True) |
| 105 | + |
| 106 | + s = sub.add_parser("preflight", help="Check environment and system prerequisites") |
| 107 | + s.set_defaults(func=cmd_preflight) |
| 108 | + |
| 109 | + s = sub.add_parser("list-models", help="List available models") |
| 110 | + s.add_argument("--remote", action="store_true", help="Include remote discovery") |
| 111 | + s.add_argument("--json", action="store_true", help="Output JSON") |
| 112 | + s.set_defaults(func=cmd_list_models) |
| 113 | + |
| 114 | + s = sub.add_parser("generate", help="Generate a video from text/image/video") |
| 115 | + s.add_argument("--prompt", required=True) |
| 116 | + s.add_argument("--model", help="Model ID (e.g., veo-3.0-fast-generate-preview)") |
| 117 | + s.add_argument("--image", help="Path to input image") |
| 118 | + s.add_argument("--video", help="Path to input video") |
| 119 | + s.add_argument("--extract-at", type=float, default=-1.0, help="Time offset for video continuation") |
| 120 | + s.add_argument("--json", action="store_true", help="Output JSON") |
| 121 | + s.set_defaults(func=cmd_generate) |
| 122 | + |
| 123 | + s = sub.add_parser("continue", help="Continue a video and stitch seamlessly") |
| 124 | + s.add_argument("--video", required=True, help="Source video path") |
| 125 | + s.add_argument("--prompt", required=True) |
| 126 | + s.add_argument("--model", help="Model ID") |
| 127 | + s.add_argument("--extract-at", type=float, default=-1.0) |
| 128 | + s.add_argument("--overlap", type=float, default=1.0) |
| 129 | + s.add_argument("--json", action="store_true") |
| 130 | + s.set_defaults(func=cmd_continue) |
| 131 | + |
| 132 | + return p |
| 133 | + |
| 134 | + |
| 135 | +def main(argv: Optional[list[str]] = None) -> int: |
| 136 | + parser = build_parser() |
| 137 | + ns = parser.parse_args(argv) |
| 138 | + return ns.func(ns) |
| 139 | + |
| 140 | + |
| 141 | +if __name__ == "__main__": # pragma: no cover |
| 142 | + raise SystemExit(main()) |
| 143 | + |
| 144 | + |
0 commit comments