-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
114 lines (95 loc) · 3.83 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import os
import os.path
import sys
import logging
import copy
import time
import torch
import numpy as np
from utils import factory
from utils.data_manager import DataManager
from utils.toolkit import count_parameters
def train(args):
seed_list = copy.deepcopy(args['seed'])
device = copy.deepcopy(args['device'])
device = device.split(',')
for seed in seed_list:
args['seed'] = seed
args['device'] = device
_train(args)
def _train(args):
logdir = 'logs/{}/{}_tasks'.format(args['dataset'], args['total_sessions'])
args['logdir'] = logdir
if not os.path.exists(logdir):
os.makedirs(logdir)
logfilename = os.path.join(logdir, '{}_ca:{}_msc:{}_cc:{}_rank:{}_{}_{}_{}-{}'.format(args['seed'], args["ca"], args["msc"], args["cc"], args['rank'], args["lora_type"], args['model_name'], args['optim'], args['lrate']))
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s [%(filename)s] => %(message)s',
handlers=[
logging.FileHandler(filename=logfilename + '.log'),
logging.StreamHandler(sys.stdout)
]
)
print(logfilename)
_set_random(args)
_set_device(args)
print_args(args)
data_manager = DataManager(
args['dataset'],
args['shuffle'],
args['seed'],
args['init_cls'],
args['increment'],
args
)
model = factory.get_model(args['model_name'], args)
cnn_curve, cnn_curve_with_task, nme_curve, cnn_curve_task = {'top1': []}, {'top1': []}, {'top1': []}, {'top1': []}
for task_id in range(data_manager.nb_tasks):
logging.info('All params: {}'.format(count_parameters(model._network)))
time_start = time.time()
model.incremental_train(data_manager)
time_end = time.time()
logging.info('Time:{}'.format(time_end - time_start))
time_start = time.time()
cnn_accy, cnn_accy_with_task, nme_accy, cnn_accy_task = model.eval_task()
time_end = time.time()
logging.info('Time:{}'.format(time_end - time_start))
# raise Exception
model.after_task()
logging.info('CNN: {}'.format(cnn_accy['grouped']))
cnn_curve['top1'].append(cnn_accy['top1'])
cnn_curve_with_task['top1'].append(cnn_accy_with_task['top1'])
cnn_curve_task['top1'].append(cnn_accy_task)
logging.info('CNN top1 curve: {}'.format(cnn_curve['top1']))
logging.info('CNN top1 with task curve: {}'.format(cnn_curve_with_task['top1']))
logging.info('CNN top1 task curve: {}'.format(cnn_curve_task['top1']))
if task_id > 0:
diagonal = np.diag(model.acc_matrix)
forgetting = np.mean((np.max(model.acc_matrix, axis=1) -
model.acc_matrix[:, task_id])[:task_id])
backward = np.mean((model.acc_matrix[:, task_id] - diagonal)[:task_id])
result_str = "Forgetting: {:.4f}\tBackward: {:.4f}".format(forgetting, backward)
logging.info(result_str)
logging.info('Accuracy Matrix: \n {}'.format(model.acc_matrix.T.round(2)))
logging.info('Average Accuracy: {}'.format(np.mean(cnn_curve['top1'])))
logging.info('Last Accuracy: {}'.format(cnn_curve['top1'][-1]))
def _set_device(args):
device_type = args['device']
gpus = []
for device in device_type:
if device_type == -1:
device = torch.device('cpu')
else:
device = torch.device('cuda:{}'.format(device))
gpus.append(device)
args['device'] = gpus
def _set_random(args):
torch.manual_seed(args['seed'])
torch.cuda.manual_seed(args['seed'])
torch.cuda.manual_seed_all(args['seed'])
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def print_args(args):
for key, value in args.items():
logging.info('{}: {}'.format(key, value))