Precompiled and optimized PyTorch package for NVIDIA Jetson devices running JetPack 6.x (L4T 36.x).
This package includes CUDA, cuDNN, and TensorRT support, built specifically for Jetson Orin platforms.
-
Name:
torch-2.5.0a0+gita8d6afb-jetson-jp6.1-a8d6afb.deb -
Architecture:
arm64 -
Supported Jetson boards:
- Jetson Orin Nano
- Jetson Orin NX
- Jetson AGX Orin
-
Supported JetPack versions:
- JetPack 6.1 (tested)
- JetPack 6.2 (compatible unless ABI changes)
Note:
This release includes only PyTorch (torch).
It does not include TorchVision or TorchAudio.
Download the file from the Releases section:
torch-2.5.0a0+gita8d6afb-jetson-jp6.1-a8d6afb.deb
sudo apt install ./torch-2.5.0a0+gita8d6afb-jetson-jp6.1-a8d6afb.debAPT will automatically install the package into:
/usr/local/lib/python3.10/dist-packages/
(or the Python version used in your build)
Run the following test:
python3 - << 'EOF'
import torch
print("PyTorch version:", torch.__version__)
print("CUDA available:", torch.cuda.is_available())
if torch.cuda.is_available():
print("CUDA device:", torch.cuda.get_device_name(0))
EOFExpected output:
PyTorch version: 2.5.x+gitXXXX
CUDA available: True
CUDA device: NVIDIA Orin (SM 8.7)
- JetPack 6.x (L4T 36.x)
- Python 3.10 (or whatever version your build targets)
- CUDA / cuDNN / TensorRT (already provided by JetPack)
No extra NVIDIA downloads are required.
The .deb installs:
/usr/local/lib/python3.10/dist-packages/torch/
/usr/local/lib/python3.10/dist-packages/torch-<VERSION>.dist-info/
/usr/local/lib/python3.10/dist-packages/nvidia/*
Includes:
- CUDA kernels for Jetson Orin
- ATen + cuDNN
- TensorRT-supported layers
- Custom architecture build for Orin (
sm_87)
- FlashAttention is disabled (to prevent JetPack 6.x crashes).
- MPI, Gloo, NCCL, Distributed training → disabled.
- ABI checks disabled to match NVIDIA’s JetPack toolchain.
- Build optimized for stability + compatibility, not multi-GPU features.
PyTorch is BSD-licensed.
This repository redistributes compiled binaries for developer convenience.