-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcreate_submission.py
284 lines (253 loc) · 12.9 KB
/
create_submission.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from os import getcwd, makedirs
from os.path import join, exists
import datetime as dt
from sklearn.cluster import KMeans
from sklearn import metrics
time0 = dt.datetime.now()
# set folders
base_folder = getcwd()
data_folder = join(base_folder, 'data')
subm_folder = join(base_folder, 'submissions')
du_folder = join(base_folder, 'du')
if not exists(du_folder):
makedirs(du_folder)
# read data
train = pd.read_csv(join(data_folder, 'train.csv'))
test = pd.read_csv(join(data_folder, 'test.csv'))
ss = pd.read_csv(join(data_folder, 'sampleSubmission.csv'))
ss_auc = pd.read_csv(join(data_folder, 'submission_auc.csv'))
train['Id'] = np.arange(len(train))
# date -> year, month
train['year'] = map(lambda x: int(x.split('-')[0]), train['Date'])
train['month'] = map(lambda x: int(x.split('-')[1]), train['Date'])
test['year'] = map(lambda x: int(x.split('-')[0]), test['Date'])
test['month'] = map(lambda x: int(x.split('-')[1]), test['Date'])
###############################################################################
# Monthly features
###############################################################################
test['t_0'] = ((test['month'] == 5)*1 + (test['month'] == 6)*1)
test['t_1'] = (test['month'] == 10)*1
i = 2
for y in list(set(test['year'])):
for m in [7, 8, 9]:
test['t_' + str(i)] = ((test['year'] == y)*1 * (test['month'] == m)*1)
i += 1
# create month submissions
a = 0
for i in range(14):
ss['WnvPresent'] = test['t_'+str(i)]
ss.to_csv(join(subm_folder, 'test_t'+str(i)+'.csv'), index=False)
a += ss['WnvPresent'].sum()
# train
train['t_0'] = ((train['month'] == 5)*1 + (train['month'] == 6)*1)
train['t_1'] = (train['month'] == 10)*1
i = 2
for y in list(set(train['year'])):
for m in [7, 8, 9]:
train['t_' + str(i)] = ((train['year'] == y)*1 * (train['month'] == m)*1)
i += 1
print train.shape[1] - 2 == test.shape[1] # Ok
###############################################################################
# Shifted Monthly features
###############################################################################
date_times = [dt.datetime.strptime(d, '%Y-%m-%d') for d in list(test['Date'])]
date_times_2w = [d + dt.timedelta(days=14) for d in date_times]
test['month_2w'] = [d.month for d in date_times_2w]
test['w_0'] = ((test['month_2w'] == 5)*1 + (test['month_2w'] == 6)*1 + (test['month_2w'] == 7)*1)
test['w_1'] = (test['month_2w'] == 10)*1
i = 2
for y in list(set(test['year'])):
for m in [8, 9]:
test['w_' + str(i)] = ((test['year'] == y)*1 * (test['month_2w'] == m)*1)
i += 1
# create shifted month submissions
a = 0
for i in range(9):
ss['WnvPresent'] = test['w_'+str(i)]
ss.to_csv(join(subm_folder, 'test_w'+str(i)+'.csv'), index=False)
a += ss['WnvPresent'].sum()
# train
date_times = [dt.datetime.strptime(d, '%Y-%m-%d') for d in list(train['Date'])]
date_times_2w = [d + dt.timedelta(days=14) for d in date_times]
train['month_2w'] = [d.month for d in date_times_2w]
train['w_0'] = ((train['month_2w'] == 5)*1 + (train['month_2w'] == 6)*1 + (train['month_2w'] == 7)*1)
train['w_1'] = (train['month_2w'] == 10)*1
i = 2
for y in list(set(train['year'])):
for m in [8, 9]:
train['w_' + str(i)] = ((train['year'] == y)*1 * (train['month_2w'] == m)*1)
i += 1
print train.shape[1] - 2 == test.shape[1] # Ok
###############################################################################
# Species Features
###############################################################################
test['s_0'] = (test['Species'] == 'UNSPECIFIED CULEX')*1
test['s_1'] = ((test['Species'] == 'CULEX ERRATICUS')*1 + (test['Species'] == 'CULEX SALINARIUS')*1 + (test['Species'] == 'CULEX TARSALIS')*1 + (test['Species'] == 'CULEX TERRITANS')*1)
i = 2
for y in list(set(test['year'])):
for s in ['CULEX PIPIENS', 'CULEX PIPIENS/RESTUANS', 'CULEX RESTUANS']:
test['s_' + str(i)] = ((test['year'] == y)*1 * (test['Species'] == s)*1)
i += 1
# create species submissions
a = 0
for i in range(14):
ss['WnvPresent'] = test['s_'+str(i)]
ss.to_csv(join(subm_folder, 'test_s'+str(i)+'.csv'), index=False)
a += ss['WnvPresent'].sum()
# train
train['s_0'] = (train['Species'] == 'UNSPECIFIED CULEX')*1
train['s_1'] = ((train['Species'] == 'CULEX ERRATICUS')*1 + (train['Species'] == 'CULEX SALINARIUS')*1 + (train['Species'] == 'CULEX TARSALIS')*1 + (train['Species'] == 'CULEX TERRITANS')*1)
i = 2
for y in list(set(train['year'])):
for s in ['CULEX PIPIENS', 'CULEX PIPIENS/RESTUANS', 'CULEX RESTUANS']:
train['s_' + str(i)] = ((train['year'] == y)*1 * (train['Species'] == s)*1)
i += 1
print train.shape[1] - 2 == test.shape[1] # Ok
###############################################################################
# Location Features
###############################################################################
# Create Location Clusters
kmeans = KMeans(init='k-means++', n_clusters=10, n_init=10, random_state=1987)
kmeans.fit(train[['Latitude','Longitude']])
train['location'] = kmeans.predict(train[['Latitude','Longitude']])
test['location'] = kmeans.predict(test[['Latitude','Longitude']])
# plot clusters
fig, ax = plt.subplots(ncols=2, sharex=True, sharey=True)
ax[0].scatter(train['Latitude'], train['Longitude'], s=50, c=train['location'], alpha=.2)
ax[0].grid()
ax[0].set_title('train')
ax[1].scatter(test['Latitude'], test['Longitude'], s=50, c=test['location'], alpha=.2)
ax[1].grid()
ax[1].set_title('test')
ax[0].set_xlabel('Latitude')
ax[1].set_xlabel('Latitude')
ax[0].set_ylabel('Longitude')
plt.suptitle('Location Clusters')
fig.savefig(join(du_folder, 'Clusters.png'), dpi=300)
# species with positive train samples and relevant season
train['pipiens_restuans'] = ((train['Species'] == 'CULEX PIPIENS')*1 + (train['Species'] == 'CULEX PIPIENS/RESTUANS')*1 + (train['Species'] == 'CULEX RESTUANS')*1)
train['season'] = ((train['month'] == 7)*1 + (train['month'] == 8)*1 + (train['month'] == 9)*1)
test['pipiens_restuans'] = ((test['Species'] == 'CULEX PIPIENS')*1 + (test['Species'] == 'CULEX PIPIENS/RESTUANS')*1 + (test['Species'] == 'CULEX RESTUANS')*1)
test['season'] = ((test['month'] == 7)*1 + (test['month'] == 8)*1 + (test['month'] == 9)*1)
train.groupby(['season']).mean()['WnvPresent']
for l in list(set(test['location'])):
test['l_' + str(l)] = (test['location'] == l)*1 * test['pipiens_restuans'] * test['season']
for l in list(set(train['location'])):
train['l_' + str(l)] = (train['location'] == l)*1 * train['pipiens_restuans'] * train['season']
# create species submissions
a = 0
for l in list(set(test['location'])):
ss['WnvPresent'] = test['l_'+str(l)]
ss.to_csv(join(subm_folder, 'test_l'+str(l)+'.csv'), index=False)
a += ss['WnvPresent'].sum()
print train.shape[1] - 2 == test.shape[1] # Ok
###############################################################################
# Test Record Counts
###############################################################################
# DateCount
dt_count = test.groupby('Date').count()[['Id']]
dt_count.columns = ['DateCount']
test = pd.merge(test, dt_count, how='inner', left_on='Date', right_index=True)
cnt_pred = np.array(test['DateCount'])
cnt_pred = 1.0*(cnt_pred - cnt_pred.min()) / (cnt_pred.max() - cnt_pred.min())
ss['WnvPresent'] = cnt_pred
ss.to_csv(join(subm_folder, 'DateCount.csv'), index=False)
###############################################################################
# Training simulation
###############################################################################
result = []
for repeat in range(100):
print repeat,
train['random'] = np.random.rand(len(train))
public = train[train['random'] < .3]
private = train[train['random'] >= .3]
features = list(train.columns)
to_remove = ['Date', 'Address', 'Species', 'Block', 'Street', 'Trap', 'AddressNumberAndStreet', 'Latitude', 'Longitude', 'AddressAccuracy', 'NumMosquitos', 'WnvPresent', 'Id', 'year', 'month', 'month_2w', 'location', 'pipiens_restuans', 'season', 'random']
features = [f for f in features if f not in to_remove]
feature_auc = []
for f in features:
fpr_public, tpr_public, thresholds = metrics.roc_curve(np.array(public['WnvPresent']), np.array(public[f]), pos_label=1)
auc_public = metrics.auc(fpr_public, tpr_public)
feature_auc.append([f, auc_public])
feature_auc_df = pd.DataFrame(feature_auc, columns=['f', 'auc_public'])
feature_auc_df['importance'] = np.abs(.5 - feature_auc_df['auc_public'])
feature_auc_df = feature_auc_df.sort('importance')
for alpha in [.33, .5, .6, .75, 1., 1.5, 2.]:
for n in range(len(feature_auc_df) - 10):
ensemble_public_prediction = np.zeros(len(public))
ensemble_private_prediction = np.zeros(len(private))
for i, row in feature_auc_df[n:].iterrows():
f = row['f']
auc = row['auc_public']
if(auc > .5):
ensemble_public_prediction += (np.abs(auc - .5)**alpha) * np.array(public[f])
ensemble_private_prediction += (np.abs(auc - .5)**alpha) * np.array(private[f])
else:
ensemble_public_prediction -= (np.abs(auc - .5)**alpha) * np.array(public[f])
ensemble_private_prediction -= (np.abs(auc - .5)**alpha) * np.array(private[f])
ensemble_public_prediction = (ensemble_public_prediction - ensemble_public_prediction.min()) / (ensemble_public_prediction.max() - ensemble_public_prediction.min())
ensemble_private_prediction = (ensemble_private_prediction - ensemble_private_prediction.min()) / (ensemble_private_prediction.max() - ensemble_private_prediction.min())
fpr_public, tpr_public, thresholds = metrics.roc_curve(np.array(public['WnvPresent']), ensemble_public_prediction, pos_label=1)
auc_public = metrics.auc(fpr_public, tpr_public)
fpr_private, tpr_private, thresholds = metrics.roc_curve(np.array(private['WnvPresent']), ensemble_private_prediction, pos_label=1)
auc_private = metrics.auc(fpr_private, tpr_private)
result.append([n, alpha, auc_public, auc_private])
result_df = pd.DataFrame(result, columns=['n', 'alpha', 'auc_public',
'auc_private'])
result_df.to_csv(join(du_folder, 'SplitTest.csv'), index=False)
print result_df.shape
fig, ax = plt.subplots(ncols=2, sharey=True)
for alpha in [.33, .5, .6, .75, 1., 1.5, 2.]:
a = result_df[result_df['alpha'] == alpha]
private = a.groupby('n').mean()['auc_private']
public = a.groupby('n').mean()['auc_public']
ax[0].plot(public, 'o--', linewidth=2, alpha=.5, label = str(np.round(alpha,3)))
ax[1].plot(private, 'o--', linewidth=2, alpha=.5)
ax[0].grid()
ax[1].grid()
ax[0].legend(loc=0)
ax[0].set_title('Public Split')
ax[1].set_title('Private Split')
ax[0].set_xlabel('number of features')
ax[1].set_xlabel('number of features')
ax[0].set_ylabel('AUC')
fig.savefig(join(du_folder, 'SubmissionWeighting.png'), dpi=300)
fig, ax = plt.subplots()
plt.plot(fpr_public, tpr_public, 'b-', alpha=.3, linewidth=2)
plt.plot(fpr_private, tpr_private, 'g-', alpha=.3, linewidth=2)
plt.grid()
fig.savefig(join(du_folder, 'ROC.png'), dpi=300)
###############################################################################
# Create Final Submission
###############################################################################
alpha = .5
ss_auc['importance'] = np.abs(.5 - ss_auc['auc'])
ss_auc = ss_auc.sort('importance')
ensemble_pred = np.zeros(len(ss))
for drop in [0, 5, 10, 15, 20]:
for i, row in ss_auc[drop:].iterrows(): # drop the most random 5 submissions
prev_subm = pd.read_csv(join(subm_folder, row['f']))
if(row['auc'] > .5):
ensemble_pred += (np.abs(row['auc'] - .5))**alpha * np.array(prev_subm['WnvPresent'])
else:
ensemble_pred -= (np.abs(row['auc'] - .5))**alpha * np.array(prev_subm['WnvPresent'])
ensemble_pred = (ensemble_pred - ensemble_pred.min()) / (ensemble_pred.max() - ensemble_pred.min())
ss['WnvPresent'] = ensemble_pred
rm = pd.read_csv(join(subm_folder, 'realmodel.csv'))
ensemble_pred += 1.5 * np.array(rm['WnvPresent'])
ensemble_pred = (ensemble_pred - ensemble_pred.min()) / (ensemble_pred.max() - ensemble_pred.min())
ss['WnvPresent'] = ensemble_pred
# Decrease the Species and Time weights where there is not WNV in training
test = test.sort('Id')
ensemble_pred -= 10 * np.array(test['s_0'])
ensemble_pred -= 10 * np.array(test['s_1'])
ensemble_pred -= 10 * np.array(test['t_0'])
ensemble_pred -= 1 * np.array(test['t_1'])
ensemble_pred = (ensemble_pred - ensemble_pred.min()) / (ensemble_pred.max() - ensemble_pred.min())
ss['WnvPresent'] = ensemble_pred
ss.to_csv(join(subm_folder, 'alpha_%s_drop_%s_selection.csv'%(alpha, drop)), index=False)
time1 = dt.datetime.now()
print 'total time:', (time1-time0).seconds, 'sec'