Skip to content

Commit f04369b

Browse files
authored
Merge branch 'main' into patch-13
2 parents 8259ec2 + 0c6768a commit f04369b

File tree

85 files changed

+8279
-356
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

85 files changed

+8279
-356
lines changed

CONTRIBUTORS.yaml

Lines changed: 12 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1173,7 +1173,7 @@ hrhotz:
11731173
contact_for_training: true
11741174
location:
11751175
country: CH
1176-
lat: 47.575694
1176+
lat: 47.575694
11771177
lon: 7.578796
11781178
affiliations:
11791179
- elixir-europe
@@ -2512,6 +2512,13 @@ sbenateau:
25122512
affiliations:
25132513
- elixir-europe
25142514

2515+
sbueker77:
2516+
name: Sarah Büker
2517+
joined: 2025-05
2518+
affiliations:
2519+
- dsc-bremen
2520+
- uni-bremen
2521+
25152522
scorreard:
25162523
name: Solenne Correard
25172524
@@ -2614,6 +2621,10 @@ sitjart:
26142621
affiliations:
26152622
- elixir-europe
26162623

2624+
skschum:
2625+
name: Simeon Schum
2626+
joined: 2025-02
2627+
26172628
slegras:
26182629
name: Stéphanie Legras
26192630
joined: 2017-09

ORGANISATIONS.yaml

Lines changed: 12 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -41,6 +41,18 @@ carpentries:
4141
joined: 2021-09
4242
ror: "0356fgm10"
4343

44+
dsc-bremen:
45+
name: Data Science Center
46+
url: https://www.dsc-ub.de
47+
joined: 2025-05
48+
avatar: "/training-material/shared/images/logos/data-science-center-uni-bremen.png"
49+
50+
uni-bremen:
51+
name: University of Bremen
52+
joined: 2025-05
53+
url: https://www.uni-bremen.de/
54+
avatar: "/training-material/shared/images/logos/uni-bremen.png"
55+
4456
deNBI:
4557
name: de.NBI
4658
url: https://www.denbi.de/

_includes/event-table.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@
1515
<td>
1616

1717
<a class="eventtable-title" href="{% if event.external %}{{event.external}}{% else %}{{site.baseurl}}{{event.url}}{% endif %}{% if include.campaign %}?utm_source=gtn&utm_medium=event-table&utm_campaign={{ include.campaign }}{% endif %}">{{event.title}}{% if event.draft %} (draft, will be hidden) {% endif %}</a>
18-
<div class="eventtable-description"> {{event.description}} </div>
18+
<div class="eventtable-description"> {{event.description | markdownify }} </div>
1919
</td>
2020
<td> {% if event.location %}{{event.location | format_location_short }} {% endif %} </td>
2121
<td> {% for org in event.contributions.organisers %}
Lines changed: 25 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,25 @@
1+
---
2+
layout: event-external
3+
google_form_id: 1747063386
4+
title: 'Simplifying Data Science with Galaxy: A Beginner''s Workshop'
5+
description: |
6+
This workshop aims to introduce participants to the Galaxy Project as
7+
a powerful, open-source platform for data science and FAIR data management. Attendees
8+
will learn how to process, analyze, and share data in a reproducible and accessible
9+
way – without requiring advanced programming skills. By the end, participants will
10+
have hands-on experience using Galaxy to streamline workflows and enhance research
11+
transparency. For further information and registration, see the [event page](https://www.dsc-ub.de/verant_detail.php?id=262)
12+
external: https://www.dsc-ub.de/verant_detail.php?id=262
13+
contributions:
14+
organisers:
15+
- sbueker77
16+
funding:
17+
- dsc-bremen
18+
- uni-bremen
19+
location:
20+
name: Data Science Center Bremen
21+
city: Bremen
22+
country: Germany
23+
date_start: 2025-05-20
24+
date_end: 2025-05-20
25+
---
Lines changed: 23 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,23 @@
1+
---
2+
layout: event-external
3+
google_form_id: 1747063630
4+
title: 'Bioinformatics Made Easy: A Hands-On Galaxy Workshop for Biologists'
5+
description: |
6+
This workshop is designed for biologists and life scientists who want
7+
to analyse sequence data using the Galaxy – without needing programming expertise.
8+
Participants will learn how to perform key bioinformatics tasks. By the end, attendees
9+
will be able to apply FAIR and reproducible bioinformatics workflows to their own
10+
research. For further information and registration, please visit the [event page](https://www.dsc-ub.de/verant_detail.php?id=263)
11+
external: https://www.dsc-ub.de/verant_detail.php?id=263
12+
contributions:
13+
organisers:
14+
- sbueker77
15+
funding:
16+
- dsc-bremen
17+
- uni-bremen
18+
location:
19+
name: Data Science Center Bremen
20+
city: Bremen
21+
country: Germany
22+
date_start: 2025-05-26
23+
---

events/tracks/gta2024-assembly.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -24,7 +24,7 @@ contributions:
2424
program:
2525
- section: "Introduction"
2626
description: |
27-
In this section, we will introduce what is a genome assembly, how it works, and the metrics to evaluate the quality of an assembly.
27+
In this section, we will introduce what a genome assembly is, how it works, and the metrics to evaluate the quality of an assembly. **Warning: The QC training uses large data. For a lighter, faster version, follow the video and only use the sponge data**
2828
tutorials:
2929
- type: custom
3030
name: "[Introduction To Genome Assembly](https://youtu.be/9WZe7VGtr-k)"

faqs/galaxy/datasets_change_datatype.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -14,6 +14,6 @@ examples:
1414

1515
* Click on the {% icon galaxy-pencil %} **pencil icon** for the dataset to edit its attributes
1616
* In the central panel, click {% icon galaxy-chart-select-data %} **Datatypes** tab on the top
17-
* In the {% icon galaxy-chart-select-data %} **Assign Datatype**, select {% if include.datatype %}`{{ include.datatype }}`{% else %} your desired datatype {% endif %} from "*New type*" dropdown
17+
* In the {% icon galaxy-chart-select-data %} **Assign Datatype**, select {% if include.datatype %}`{{ include.datatype }}`{% else %} your desired datatype {% endif %} from "*New Type*" dropdown
1818
- Tip: you can start typing the datatype into the field to filter the dropdown menu
1919
* Click the **Save** button

faqs/galaxy/datasets_convert_datatype.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -15,4 +15,4 @@ examples:
1515
* Click on the {% icon galaxy-pencil %} pencil icon for the dataset to edit its attributes.
1616
* In the central panel, click {% icon galaxy-chart-select-data %} Datatypes tab on the top.
1717
* In the {% icon galaxy-gear %} Convert to Datatype section, select {% if include.conversion %}`{{ include.conversion }}`{% else %} your desired datatype {% endif %} from "Target datatype" dropdown.
18-
* Click the **Create dataset** button to start the conversion.
18+
* Click the **Create Dataset** button to start the conversion.

learning-pathways/ml-using-python.md

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,6 @@ cover-image-alt: ELIXIR logo
66

77
editorial_board:
88
- bebatut
9-
draft: true
109

1110
title: Artificial Intelligence and Machine Learning in Life Sciences using Python
1211
description: |

learning-pathways/neoantigen.md

Lines changed: 67 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,67 @@
1+
layout: learning-pathway
2+
tags: [intermediate, immunopeptidomics, cancer, proteogenomics, label-free]
3+
type: use
4+
5+
title: Prediction of potential neoantigens
6+
description: |
7+
This learning path introduces a comprehensive immunopeptidogenomics workflow for neoantigen discovery using label-free mass spectrometry data. The modules guide you through fusion and variant database generation, peptide identification with FragPipe, peptide validation using PepQuery2, and immunogenicity assessment through HLA binding predictions and IEDB screening.
8+
9+
cover-image: shared/images/proteomics.png
10+
cover-image-alt: image of a 3D protein folding structure
11+
12+
editorial_board:
13+
- subinamehta
14+
15+
pathway:
16+
- section: "Neoantigen 1: Fusion-Database Generation"
17+
description: |
18+
Learn how to generate a personalized fusion peptide database using RNA-seq data. This step sets the foundation for identifying tumor-specific fusion peptides in downstream analyses.
19+
tutorials:
20+
- name: neoantigen-1-fusion-db-generation
21+
topic: proteomics
22+
23+
- section: "Neoantigen 2: Non-Reference Database Generation"
24+
description: |
25+
Construct a non-reference proteogenomic database incorporating somatic mutations, indels, and other genomic alterations from VCF data.
26+
tutorials:
27+
- name: neoantigen-2-non-reference-database-generation
28+
topic: proteomics
29+
30+
- section: "Neoantigen 3: Database Merge and FragPipe Discovery"
31+
description: |
32+
Merge the fusion and non-reference databases, then use FragPipe for mass spectrometry-based discovery of putative neopeptides.
33+
tutorials:
34+
- name: neoantigen-3-fragpipe-discovery
35+
topic: proteomics
36+
37+
- section: "Neoantigen 4: PepQuery2 Verification"
38+
description: |
39+
Perform targeted verification of neoantigen candidates using PepQuery2 for peptide-spectrum match validation.
40+
tutorials:
41+
- name: neoantigen-4-peptide-verification
42+
topic: proteomics
43+
44+
- section: "Neoantigen 5: Variant Annotation"
45+
description: |
46+
Annotate validated neopeptides with their corresponding genomic variants and protein context.
47+
tutorials:
48+
- name: neoantigen-5-variant-annotation
49+
topic: proteomics
50+
51+
- section: "Neoantigen 6: Predicting HLA Binding"
52+
description: |
53+
Predict MHC binding affinity of validated neopeptides using tools such as NetMHCpan or similar.
54+
tutorials:
55+
- name: neoantigen-6-predicting-hla-binding
56+
topic: proteomics
57+
58+
- section: "Neoantigen 7: IEDB Binding of PepQuery Validated Neopeptides"
59+
description: |
60+
Assess immunogenic potential of neopeptides by checking their binding predictions against immune epitope databases such as IEDB.
61+
tutorials:
62+
- name: neoantigen-7-hla-binding-novel-peptides
63+
topic: proteomics
64+
65+
---
66+
67+
New to immunopeptidogenomics or neoantigen prediction? Follow this learning path to discover how label-free mass spectrometry and proteogenomic integration can accelerate identification of clinically relevant neoantigens and help in personalized immunotherapy.

0 commit comments

Comments
 (0)