-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathEXAMPLES
64 lines (44 loc) · 1.45 KB
/
EXAMPLES
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
gap> s:=NumericalSemigroup(3,7);
<Modular numerical semigroup satisfying 7x mod 21 <= x >
gap> SmallElementsOfNumericalSemigroup(s);
[ 0, 3, 6, 7, 9, 10, 12 ]
gap> FrobeniusNumber(s);
11
gap> IsModularNumericalSemigroup(s);
true
gap> Display(s);
[ [ 0 ], [ 3 ], [ 6, 7 ], [ 9, 10 ], [ 12, "->" ] ]
gap> Print(s);
ModularNumericalSemigroup( [ 7, 21 ] )
gap> s;
<Modular numerical semigroup satisfying 5x mod 14 <= x >
gap> AperyListOfNumericalSemigroupWRTElement(s,30);
[ 0, 31, 32, 3, 34, 35, 6, 7, 38, 9, 10, 41, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29 ]
gap> t:=NumericalSemigroupByAperyList(last);
<Numerical semigroup>
gap> GeneratorsOfNumericalSemigroup(t);
[ 3, 7 ]
gap> s=t;
true
gap> QuotientOfNumericalSemigroup(s,31);
<Numerical semigroup with 1 generators>
gap> GeneratorsOfNumericalSemigroup(last);
[ 1 ]
gap> MinimalPresentationOfNumericalSemigroup(s);
[ [ [ 7, 0 ], [ 0, 3 ] ] ]
gap> FactorizationsElementWRTNumericalSemigroup(200,s);
[ [ 6, 26 ], [ 13, 23 ], [ 20, 20 ], [ 27, 17 ], [ 34, 14 ], [ 41, 11 ],
[ 48, 8 ], [ 55, 5 ], [ 62, 2 ] ]
gap> OmegaPrimalityOfNumericalSemigroup(s);
7
gap> 3+s;
<Ideal of numerical semigroup>
gap> SmallElementsOfIdealOfNumericalSemigroup(last);
[ 3, 6, 9, 10, 12, 13, 15 ]
gap> u:=NumericalSemigroup(11,35,79,83);
<Numerical semigroup with 4 generators>
gap> GeneratorsOfNumericalSemigroup(u);
[ 11, 35, 79, 83 ]
gap> MinimalGeneratingSystemOfNumericalSemigroup(u);
[ 11, 35, 83 ]