-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerate_measure_encodings.py
66 lines (52 loc) · 2.61 KB
/
generate_measure_encodings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
"""
Generates the measure encoding object for use with training the conditioned model.
The measure encoding object is a double dictionary that provides a lookup to a
bass-track model's average hidden state for a given track and given measure.
"""
import os
import time
import glob
import torch
import argparse
import numpy as np
from lstm import UnconditionalLSTM
from midi_sequence_dataset import MIDISequenceDataset
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--logdir', type=str, required=True)
parser.add_argument('--condition', type=int, nargs='+', required=False, default=[60, 8, 8])
parser.add_argument('--ckp', type=int, required=False)
parser.add_argument('--e_dim', type=int, default=200)
parser.add_argument('--h_dim', type=int, default=400)
parser.add_argument('--tracks', type=str, nargs='+', required=False, choices=['all', 'Strings',
'Bass', 'Drums', 'Guitar', 'Piano'])
parser.add_argument('--dataset', type=str, default="lakh", choices=['lakh', 'maestro', 'final-fantasy'])
parser.add_argument('--batch_size', type=int, default=8)
args = parser.parse_args()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
lstm = UnconditionalLSTM(embed_dim=args.e_dim, hidden_dim=args.h_dim, log_level=0)
# if specified, get specific checkpoint
checkpoint_dir = os.path.join(args.logdir, 'checkpoints')
if args.ckp:
full_path = os.path.join(checkpoint_dir, 'model_checkpoint_step_{}.pt'.format(args.ckp))
num_steps = args.ckp
# otherwise, get the last checkpoint (alphanumerically sorted)
else:
checkpoints = glob.glob(os.path.join(checkpoint_dir, "*.pt"))
# model_checkpoint_step_<step_number>.pt --> <step_number>
step_numbers = np.array(list(map(lambda x: int(x.split(".")[0].split("_")[-1]), checkpoints)))
sort_order = np.argsort(step_numbers)
num_steps = step_numbers[sort_order[-1]]
# gets the checkpoint path with the greatest number of steps
last_checkpoint_path = checkpoints[sort_order[-1]]
full_path = last_checkpoint_path
print("Loading model weights from {}...".format(full_path))
lstm.load_state_dict(torch.load(full_path, map_location=device))
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
lstm.to(device)
if args.dataset == "lakh":
tracks = '-'.join(list(args.tracks))
else:
tracks = None
dataset = MIDISequenceDataset(tracks, dataset=args.dataset)
lstm.generate_measure_encodings(dataset, args.logdir, batch_size=args.batch_size)