You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
To perform detection you can simple use the following lines:
33
33
34
34
```python
35
-
36
-
37
35
import cv2
38
36
from headpose_estimation import Headpose
37
+
headpose = Headpose()
38
+
img = cv2.imread("path_to_im.jpg")
39
+
detections,image = headpose.run(img)
40
+
```
39
41
40
-
if__name__=="__main__":
42
+
This will return a list of dictionary which looks like this `[{'bbox': [xmin, ymin, xmax, ymax], 'yaw': yaw_value, 'pitch': pitch_value, 'roll': roll_value}`
41
43
42
-
headpose = Headpose()
43
44
44
-
img = cv2.imread("path_to_im.jpg")
45
-
detections,image = headpose.run(img)
46
-
```
45
+
## Without Face Detection
46
+
To perform detection you can simple use the following lines:
47
47
48
-
This will return a list of dictionary which looks like this `[{'bbox': [xmin, ymin, xmax, ymax], 'yaw': yaw_value, 'pitch': pitch_value, 'roll': roll_value}`
48
+
```python
49
+
import cv2
50
+
from headpose_estimation import Headpose
51
+
headpose = Headpose(face_detection=False)
52
+
imgcrop = cv2.imread("path_to_im.jpg")
53
+
detections,image = headpose.run(imgcrop)
54
+
```
49
55
56
+
In this case it will return a list of dictionary which looks like this `[{'yaw': yaw_value, 'pitch': pitch_value, 'roll': roll_value}`
0 commit comments