-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathlocoeval.py
140 lines (116 loc) · 4.65 KB
/
locoeval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import torch
import torchvision
import os
import numpy as np
import gym
import utils
from copy import deepcopy
from tqdm import tqdm
from dmcvgb.make_env import make_env
import wrappers.dmc as dmc
os.environ['MKL_SERVICE_FORCE_INTEL'] = '1'
os.environ['MUJOCO_GL'] = 'egl'
from pathlib import Path
from dm_control.suite.wrappers import action_scale
from video import VideoRecorder
import imageio
import sys
import matplotlib.pyplot as plt
sys.path.append('./algos')
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--domain_name', default='walker')
parser.add_argument('--task_name', default='walk')
parser.add_argument('--algorithm', default=None, type=str)
parser.add_argument('--seed', default=None, type=int)
parser.add_argument('--eval_episodes', default=100, type=int)
parser.add_argument('--model_dir', default=None, type=str)
parser.add_argument('--save_video', default=False, action='store_true')
parser.add_argument('--mode', default='train', type=str)
class DMCVideoRecoder(VideoRecorder):
def __init__(self, root_dir, camera_id, render_size=256, fps=20):
super().__init__(root_dir, render_size, fps)
self.height = render_size
self.width = render_size
self.camera_id = camera_id
def init(self, env, mode, enabled=True):
self.frames = []
self.enabled = self.save_dir is not None and enabled
self.record(env, mode)
def record(self, env, mode):
if self.enabled:
frame = env.render(
mode='rgb_array',
height=self.height,
width=self.width,
camera_id=self.camera_id
)
if mode is not None and 'video' in mode:
_env = env
while 'video' not in _env.__class__.__name__.lower():
_env = _env.env
frame = _env.apply_to(frame)
self.frames.append(frame)
def evaluate(env, agent, video, video_dir, mode, num_episodes, seed=0, domain_name='cartpole', task_name='swingup', algo='svea', step=int(5e5)):
episode_rewards = []
count = 0
for i in tqdm(range(num_episodes)):
ep_agent = agent
try:
obs = env.reset()
except:
obs = env.reset()
video.init(env, mode, enabled=True)
done = False
episode_reward = 0
while not done:
count += 1
if algo == 'pieg':
with torch.no_grad():
action = ep_agent['agent'].act(np.array(obs),
step,
eval_mode=True)
else:
with torch.no_grad(), utils.eval_mode(ep_agent['agent']):
action = ep_agent['agent'].act(np.array(obs),
step,
eval_mode=True)
next_obs, reward, done, _ = env.step(action)
video.record(env, mode)
episode_reward += reward
obs = next_obs
video.save(f'{video_dir}/eval_{i}.mp4')
episode_reward = 0 if episode_reward < 0 else episode_reward
episode_rewards.append(episode_reward)
return np.mean(episode_rewards)
def main(args):
# Set seed
# Initialize environments
# gym.logger.set_level(40)
domain_name = args.domain_name
task_name = args.task_name
print(f'task name: {domain_name} {task_name}')
algorithm = args.algorithm
utils.set_seed_everywhere(args.seed)
env = make_env(domain_name, task_name, args.seed)
env = action_scale.Wrapper(env, minimum=-1.0, maximum=+1.0)
work_dir = Path.cwd()
print(f'workspace: {work_dir}')
if domain_name == 'unitree' or domain_name == 'quadruped':
camera_id = 1
else:
camera_id = 0
model_dir = args.model_dir + f'{domain_name}_{task_name}/{algorithm}/{args.seed}'
agent = torch.load('%s/snapshot.pt' % (model_dir), map_location='cuda:0')
step = agent['_global_step']
agent['agent'].device = torch.device('cuda:0')
if algorithm != 'pieg':
agent['agent'].train(False)
eval_episodes = args.eval_episodes if not args.save_video else 10
video_dir = utils.make_dir(os.path.join(model_dir, 'video'))
video = DMCVideoRecoder(Path(video_dir) if args.save_video else None, camera_id=camera_id, render_size=448)
reward = evaluate(env, agent, video, video_dir, args.mode, num_episodes=eval_episodes, seed=args.seed, domain_name=domain_name, task_name=task_name, algo=algorithm, step=step)
print(f'Seed {args.seed}, Reward:', int(reward))
if __name__ == '__main__':
args = parser.parse_args()
main(args)