-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect_border_width.py
53 lines (45 loc) · 1.57 KB
/
detect_border_width.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import cv2
import numpy as np
def detect_border_width(img_path, color_diff_threshold=50, sample_lines=10):
img = cv2.imread(img_path)
if img is None:
raise ValueError("Image not found")
h, w = img.shape[:2]
results = {'top':0, 'bottom':0, 'left':0, 'right':0}
def find_edge(roi, axis):
grad = np.abs(np.diff(roi, axis=axis))
grad_mean = np.mean(grad, axis=(not axis, 2))
threshold = np.max(grad_mean) * 0.8
edges = np.where(grad_mean > threshold)[0]
return edges[0] if len(edges) > 0 else 0
# 上端の幅検出
sample_step = h // sample_lines
top_edges = []
for y in range(0, h, sample_step):
roi = img[y:y+1, :, :]
edge = find_edge(roi, axis=0)
top_edges.append(edge)
results['top'] = int(np.median(top_edges))
# 下端の幅検出
bottom_edges = []
for y in range(h-1, 0, -sample_step):
roi = img[y:y+1, :, :]
edge = find_edge(roi, axis=0)
bottom_edges.append(edge)
results['bottom'] = int(np.median(bottom_edges))
# 左端の幅検出
sample_step = w // sample_lines
left_edges = []
for x in range(0, w, sample_step):
roi = img[:, x:x+1, :]
edge = find_edge(roi, axis=1)
left_edges.append(edge)
results['left'] = int(np.median(left_edges))
# 右端の幅検出
right_edges = []
for x in range(w-1, 0, -sample_step):
roi = img[:, x:x+1, :]
edge = find_edge(roi, axis=1)
right_edges.append(edge)
results['right'] = int(np.median(right_edges))
return results