|
| 1 | +# This file is part of BurnMan - a thermoelastic and thermodynamic toolkit for |
| 2 | +# the Earth and Planetary Sciences |
| 3 | +# Copyright (C) 2012 - 2023 by the BurnMan team, released under the GNU |
| 4 | +# GPL v2 or later. |
| 5 | + |
| 6 | + |
| 7 | +""" |
| 8 | +
|
| 9 | +example_add_shear_modulus |
| 10 | +------------------------- |
| 11 | +
|
| 12 | +This example shows how to create a new equation of state derived |
| 13 | +from another in order to calculate something new. In this case, we |
| 14 | +seek to create an equation of state that builds on the Holland and |
| 15 | +Powell (2011) equation of state, adding calculations for the shear |
| 16 | +modulus as proposed by Hacker and Abers (2004). |
| 17 | +
|
| 18 | +*Uses:* |
| 19 | +
|
| 20 | +* :doc:`mineral_database` |
| 21 | +* :class:`burnman.Mineral` |
| 22 | +
|
| 23 | +
|
| 24 | +*Demonstrates:* |
| 25 | +
|
| 26 | +* How to create a new equation of state and instantiate a mineral using it. |
| 27 | +* How to output thermoelastic properties from the new mineral object. |
| 28 | +
|
| 29 | +""" |
| 30 | +from __future__ import absolute_import |
| 31 | + |
| 32 | +import numpy as np |
| 33 | +import matplotlib.pyplot as plt |
| 34 | +from copy import deepcopy |
| 35 | + |
| 36 | +from burnman import Mineral |
| 37 | +from burnman.minerals import HGP_2018_ds633 |
| 38 | +from burnman.eos.hp import HP_TMT |
| 39 | + |
| 40 | +if __name__ == "__main__": |
| 41 | + # First, we create a new class, derived from HP_TMT |
| 42 | + # (the modified Tait equation of state derived by Holland and Powell, 2011). |
| 43 | + # We overwrite just a single function; the one to calculate the shear modulus. |
| 44 | + # Here we use the equations given by Hacker and Abers (2004). |
| 45 | + class HP_TMT_shear(HP_TMT): |
| 46 | + def shear_modulus(self, pressure, temperature, volume, params): |
| 47 | + x = params["V_0"] / volume |
| 48 | + phi = np.log(1.0 / x) |
| 49 | + gamma = params["Gamma_0"] |
| 50 | + f = 0.5 * (np.power(x, 2.0 / 3.0) - 1.0) |
| 51 | + f2 = np.power(1.0 + 2.0 * f, 5.0 / 2.0) |
| 52 | + G_T = params["shear_modulus_0"] * np.exp(-gamma * phi) |
| 53 | + K_PT = self.isothermal_bulk_modulus(pressure, temperature, volume, params) |
| 54 | + K_T = K_PT / ((1.0 - f * (5.0 - 3.0 * params["Kprime_0"])) * f2) |
| 55 | + G = G_T * f2 * (1.0 - f * (5.0 - 3.0 * params["Gprime_0"] * K_T / G_T)) |
| 56 | + return G |
| 57 | + |
| 58 | + # We want to create a forsterite object |
| 59 | + # that uses this new equation of state. For this, we need values |
| 60 | + # for the new parameters required by that equation of state. |
| 61 | + # Here we create a dictionary with the values from Hacker and Abers (2004). |
| 62 | + shear_params = { |
| 63 | + "fo": {"shear_modulus_0": 81.6e9, "Gamma_0": 5.19, "Gprime_0": 1.82} |
| 64 | + } |
| 65 | + |
| 66 | + # One way to use the new equation of state is to first create a Mineral object |
| 67 | + # from the existing forsterite class in HGP_2018_ds633, update the parameters |
| 68 | + # and then use the set_method() method: |
| 69 | + fo = HGP_2018_ds633.fo() |
| 70 | + fo.params.update(shear_params["fo"]) |
| 71 | + fo.set_method(HP_TMT_shear) |
| 72 | + |
| 73 | + # Now we can use the modified object: |
| 74 | + P = 1.0e9 |
| 75 | + T = 500.0 |
| 76 | + fo.set_state(P, T) |
| 77 | + |
| 78 | + # Print some values: |
| 79 | + print(f"P: {P/1.e9:.2f} GPa, T: {T:.2f} K") |
| 80 | + |
| 81 | + print("\nProperties from modified object:") |
| 82 | + print(f" Shear modulus: {fo.G/1.e9:.2f} GPa") |
| 83 | + print(f" V_p: {fo.v_p/1.e3:.2f} km/s, V_s: {fo.v_s/1.e3:.2f} km/s") |
| 84 | + |
| 85 | + # This method works well if we only want one instantiation, but what if |
| 86 | + # we want to create several? One way to do this is to define a new class |
| 87 | + # and put the required steps into the initialisation function: |
| 88 | + |
| 89 | + class fo_w_shear(Mineral): |
| 90 | + def __init__(self): |
| 91 | + tmp = HGP_2018_ds633.fo() |
| 92 | + self.params = deepcopy(tmp.params) |
| 93 | + name = self.params["name"] |
| 94 | + self.params.update(shear_params[name]) |
| 95 | + Mineral.__init__(self) |
| 96 | + self.set_method(HP_TMT_shear) |
| 97 | + |
| 98 | + # Now we can create new object from the modified class |
| 99 | + fo = fo_w_shear() |
| 100 | + fo.set_state(P, T) |
| 101 | + |
| 102 | + print("\nProperties from object created from modified class:") |
| 103 | + print(f" Shear modulus: {fo.G/1.e9:.2f} GPa") |
| 104 | + print(f" V_p: {fo.v_p/1.e3:.2f} km/s, V_s: {fo.v_s/1.e3:.2f} km/s") |
| 105 | + |
| 106 | + # We can now do anything we like with this new mineral, |
| 107 | + # like use the evaluate method: |
| 108 | + pressures = np.linspace(1.0e5, 10.0e9, 101) |
| 109 | + T = 1500.0 |
| 110 | + temperatures = np.ones_like(pressures) * T |
| 111 | + |
| 112 | + v_p, v_s = fo.evaluate(["v_p", "v_s"], pressures, temperatures) |
| 113 | + plt.plot(pressures / 1.0e9, v_p / 1.0e3, label=f"$V_P$ for {fo.name} at {T} K") |
| 114 | + plt.plot(pressures / 1.0e9, v_s / 1.0e3, label=f"$V_S$ for {fo.name} at {T} K") |
| 115 | + plt.xlabel("Pressure (GPa)") |
| 116 | + plt.ylabel("Velocities (km/s)") |
| 117 | + plt.legend() |
| 118 | + plt.show() |
0 commit comments