Skip to content

Commit 2b380fe

Browse files
committed
Added ref for poroelastodynamic and update formulation
1 parent 56dd824 commit 2b380fe

File tree

3 files changed

+17
-3
lines changed

3 files changed

+17
-3
lines changed

docs/references.bib

Lines changed: 10 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -105,6 +105,16 @@ @Article{Day:Ely:2002
105105
doi = {10.1785/0120010273}
106106
}
107107

108+
@article{ding2013fundamental,
109+
title={Fundamental solutions of poroelastodynamics in frequency domain based on wave decomposition},
110+
author={Ding, Boyang and Cheng, Alexander H-D and Chen, Zhanglong},
111+
journal={Journal of Applied Mechanics},
112+
volume={80},
113+
number={6},
114+
year={2013},
115+
publisher={American Society of Mechanical Engineers Digital Collection}
116+
}
117+
108118
@Article{Drucker:Prager:1952,
109119
author = {Drucker, D.~C. and Prager, W.},
110120
title = {Soil mechanics and plastic analysis for limit design},

docs/user/governingeqns/poroelasticity/dynamic.md

Lines changed: 6 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -36,8 +36,12 @@ We replace the variation of fluid content variable, $\zeta$, with its definition
3636
\frac{\dot{p}}{M} = \gamma \left(\vec{x},t \right) - \alpha \left( \nabla \cdot \dot{\vec{u}} \right) -\nabla \cdot \vec{q}.
3737
\end{gather}
3838
%
39-
We write the volumetric strain in terms of displacement, because this dynamic formulation does not include the volumetric strain as an unknown.
40-
39+
We write the volumetric strain in terms of displacement, because this dynamic formulation does not include the volumetric strain as an unknown. Note that for poroelastodynamics we use the generalized Darcy's law {cite}`ding2013fundamental` as
40+
%
41+
\begin{equation}
42+
\vec{q}(p) = -\frac{\boldsymbol{k}}{\mu_{f}}(\nabla p + \rho_{f} \frac{\partial \vec{v}}{\partial t} - \vec{f}_f).
43+
\end{equation}
44+
%
4145
Using trial functions ${\vec{\psi}_\mathit{trial}^{u}}$, ${\psi_\mathit{trial}^{p}}$, and ${\vec{\psi}_\mathit{trial}^{v}}$, and incorporating the Neumann boundary conditions, the weak form may be written as:
4246
%
4347
\begin{align}

docs/user/governingeqns/poroelasticity/index.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -44,7 +44,7 @@ For this case, we will assume that the material properties are isotropic, result
4444
%
4545
\begin{equation}
4646
\boldsymbol{\sigma}(\vec{u},p) = \boldsymbol{C}:\boldsymbol{\epsilon} - \alpha p \boldsymbol{I}
47-
= \lambda \boldsymbol{I} \epsilon_{v} + 2 \mu - \alpha \boldsymbol{I} p
47+
= \lambda \boldsymbol{I} \epsilon_{v} + 2 \mu \boldsymbol{\epsilon} - \alpha \boldsymbol{I} p
4848
\end{equation}
4949
%
5050
where $\lambda$ and $\mu$ are Lamé's parameters, $\lambda = K_{d} - \frac{2 \mu}{3}$, $\mu$ is the shear modulus, and the volumetric strain is defined as $\epsilon_{v} = \nabla \cdot \vec{u}$.

0 commit comments

Comments
 (0)