Skip to content

Commit 48f264a

Browse files
Merge pull request #659 from rezgarshakeri/rezgar/update-doc
Poroelastodynamic ref and formulation
2 parents 56dd824 + ba34f02 commit 48f264a

File tree

3 files changed

+18
-2
lines changed

3 files changed

+18
-2
lines changed

docs/references.bib

Lines changed: 10 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -105,6 +105,16 @@ @Article{Day:Ely:2002
105105
doi = {10.1785/0120010273}
106106
}
107107

108+
@article{ding2013fundamental,
109+
title={Fundamental solutions of poroelastodynamics in frequency domain based on wave decomposition},
110+
author={Ding, Boyang and Cheng, Alexander H-D and Chen, Zhanglong},
111+
journal={Journal of Applied Mechanics},
112+
volume={80},
113+
number={6},
114+
year={2013},
115+
publisher={American Society of Mechanical Engineers Digital Collection}
116+
}
117+
108118
@Article{Drucker:Prager:1952,
109119
author = {Drucker, D.~C. and Prager, W.},
110120
title = {Soil mechanics and plastic analysis for limit design},

docs/user/governingeqns/poroelasticity/dynamic.md

Lines changed: 7 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -37,7 +37,13 @@ We replace the variation of fluid content variable, $\zeta$, with its definition
3737
\end{gather}
3838
%
3939
We write the volumetric strain in terms of displacement, because this dynamic formulation does not include the volumetric strain as an unknown.
40-
40+
Note that for poroelastodynamics we use the generalized Darcy's law {cite}`ding2013fundamental` as
41+
%
42+
\begin{equation}
43+
\vec{q}(p) = -\frac{\boldsymbol{k}}{\mu_{f}}(\nabla p - \vec{f}_f + \rho_{f} \frac{\partial \vec{v}}{\partial t}),
44+
\end{equation}
45+
%
46+
where the generalized Darcy's law adds the term $\rho_{f} \frac{\partial \vec{v}}{\partial t}$.
4147
Using trial functions ${\vec{\psi}_\mathit{trial}^{u}}$, ${\psi_\mathit{trial}^{p}}$, and ${\vec{\psi}_\mathit{trial}^{v}}$, and incorporating the Neumann boundary conditions, the weak form may be written as:
4248
%
4349
\begin{align}

docs/user/governingeqns/poroelasticity/index.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -44,7 +44,7 @@ For this case, we will assume that the material properties are isotropic, result
4444
%
4545
\begin{equation}
4646
\boldsymbol{\sigma}(\vec{u},p) = \boldsymbol{C}:\boldsymbol{\epsilon} - \alpha p \boldsymbol{I}
47-
= \lambda \boldsymbol{I} \epsilon_{v} + 2 \mu - \alpha \boldsymbol{I} p
47+
= \lambda \boldsymbol{I} \epsilon_{v} + 2 \mu \boldsymbol{\epsilon} - \alpha \boldsymbol{I} p
4848
\end{equation}
4949
%
5050
where $\lambda$ and $\mu$ are Lamé's parameters, $\lambda = K_{d} - \frac{2 \mu}{3}$, $\mu$ is the shear modulus, and the volumetric strain is defined as $\epsilon_{v} = \nabla \cdot \vec{u}$.

0 commit comments

Comments
 (0)