-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoverrides.py
324 lines (297 loc) · 12.7 KB
/
overrides.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import math
import os
from pathlib import Path
from typing import Optional, Any, Dict, Union
import joblib
import numpy as np
import requests
import torch
from setfit import SetFitTrainer, SetFitModel
from setfit.modeling import (
OneVsRestClassifier,
SentenceTransformer,
MODEL_HEAD_NAME,
hf_hub_download,
SetFitHead,
LogisticRegression,
MultiOutputClassifier,
ClassifierChain
)
from setfit.trainer import (
logger,
losses,
sentence_pairs_generation
)
from torch.utils.data import DataLoader
class CustomModel(SetFitModel):
@classmethod
def _from_pretrained(
cls,
model_id: str,
revision: Optional[str] = None,
cache_dir: Optional[str] = None,
force_download: Optional[bool] = None,
proxies: Optional[Dict] = None,
resume_download: Optional[bool] = None,
local_files_only: Optional[bool] = None,
use_auth_token: Optional[Union[bool, str]] = None,
multi_target_strategy: Optional[str] = None,
use_differentiable_head: bool = False,
normalize_embeddings: bool = False,
silent: bool = True,
**model_kwargs,
) -> "SetFitModel":
"""Their classmethod was bad >.< >.<"""
model_body = SentenceTransformer(
model_id, cache_folder=cache_dir, use_auth_token=use_auth_token
)
target_device = model_body._target_device
model_body.to(target_device) # put `model_body` on the target device
if os.path.isdir(model_id):
if MODEL_HEAD_NAME in os.listdir(model_id):
model_head_file = os.path.join(model_id, MODEL_HEAD_NAME)
else:
if not silent:
logger.info(
f"{MODEL_HEAD_NAME} not found in {Path(model_id).resolve()},"
" initialising classification head with random weights."
" You should TRAIN this model on a downstream task to use it for predictions and inference."
)
model_head_file = None
else:
try:
model_head_file = hf_hub_download(
repo_id=model_id,
filename=MODEL_HEAD_NAME,
revision=revision,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
use_auth_token=use_auth_token,
local_files_only=local_files_only,
)
except requests.exceptions.RequestException:
logger.info(
f"{MODEL_HEAD_NAME} not found on HuggingFace Hub, initialising classification head with random weights."
" You should TRAIN this model on a downstream task to use it for predictions and inference."
)
model_head_file = None
if model_head_file is not None:
model_head = joblib.load(model_head_file)
else:
head_params = model_kwargs.get("head_params", {})
if use_differentiable_head:
if multi_target_strategy is None:
use_multitarget = False
else:
if multi_target_strategy in ["one-vs-rest", "multi-output"]:
use_multitarget = True
else:
raise ValueError(
f"multi_target_strategy '{multi_target_strategy}' is not supported for differentiable head"
)
# Base `model_head` parameters
# - get the sentence embedding dimension from the `model_body`
# - follow the `model_body`, put `model_head` on the target device
base_head_params = {
"in_features": model_body.get_sentence_embedding_dimension(),
"device": target_device,
"multitarget": use_multitarget,
}
model_head = SetFitHead(**{**head_params, **base_head_params})
else:
clf = LogisticRegression(**head_params)
if multi_target_strategy is not None:
if multi_target_strategy == "one-vs-rest":
multilabel_classifier = OneVsRestClassifier(clf)
elif multi_target_strategy == "multi-output":
multilabel_classifier = MultiOutputClassifier(clf)
elif multi_target_strategy == "classifier-chain":
multilabel_classifier = ClassifierChain(clf)
else:
raise ValueError(
f"multi_target_strategy {multi_target_strategy} is not supported."
)
model_head = multilabel_classifier
else:
model_head = clf
return cls(
model_body=model_body,
model_head=model_head,
multi_target_strategy=multi_target_strategy,
normalize_embeddings=normalize_embeddings,
)
def is_frozen_head(self):
requires_grad = False
for param in self.model_head.parameters():
requires_grad = requires_grad or param.requires_grad
return not requires_grad
def is_frozen_body(self):
requires_grad = False
for param in self.model_body.parameters():
requires_grad = requires_grad or param.requires_grad
return not requires_grad
def _prepare_optimizer(
self,
learning_rate: float,
body_learning_rate: Optional[float],
l2_weight: float,
) -> torch.optim.Optimizer:
body_learning_rate = body_learning_rate or learning_rate
l2_weight = l2_weight or self.l2_weight
param_groups = []
if not self.is_frozen_body():
param_groups.append(
{
"params": self.model_body.parameters(),
"lr": body_learning_rate,
"weight_decay": l2_weight,
}
)
if not self.is_frozen_head():
param_groups.append(
{
"params": self.model_head.parameters(),
"lr": learning_rate,
"weight_decay": l2_weight,
}
)
optimizer = torch.optim.AdamW(param_groups)
return optimizer
# def fit(
# self,
# x_train: List[str],
# y_train: Union[List[int], List[List[int]]],
# num_epochs: int,
# batch_size: Optional[int] = None,
# learning_rate: Optional[float] = None,
# body_learning_rate: Optional[float] = None,
# l2_weight: Optional[float] = None,
# max_length: Optional[int] = None,
# show_progress_bar: Optional[bool] = None,
# ) -> None:
# # TODO: delete this function, we dont actually need to override it
# if self.has_differentiable_head: # train with pyTorch
# device = self.model_body.device
# self.model_body.train()
# self.model_head.train()
#
# dataloader = self._prepare_dataloader(x_train, y_train, batch_size, max_length)
# criterion = self.model_head.get_loss_fn()
# optimizer = self._prepare_optimizer(learning_rate, body_learning_rate, l2_weight)
# scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.5)
# for epoch_idx in tqdm(range(num_epochs), desc="Epoch", disable=not show_progress_bar):
# for batch in dataloader:
# features, labels = batch
# optimizer.zero_grad()
#
# # to model's device
# features = {k: v.to(device) for k, v in features.items()}
# labels = labels.to(device)
#
# outputs = self.model_body(features)
# print("O: ", outputs)
# print("L: ", labels)
# if self.normalize_embeddings:
# outputs = torch.nn.functional.normalize(outputs, p=2, dim=1)
# outputs = self.model_head(outputs)
# logits = outputs["logits"]
#
# loss = criterion(logits, labels)
# loss.backward()
# optimizer.step()
#
# scheduler.step()
# else: # train with sklearn
# embeddings = self.model_body.encode(x_train, normalize_embeddings=self.normalize_embeddings)
# self.model_head.fit(embeddings, y_train)
class CustomTrainer(SetFitTrainer):
def train(
self,
num_epochs: Optional[int] = None,
num_epochs_finetune: Optional[int] = None,
batch_size: Optional[int] = None,
learning_rate: Optional[float] = None,
body_learning_rate: Optional[float] = None,
l2_weight: Optional[float] = None,
max_length: Optional[int] = None,
trial: Optional[Union["optuna.Trial", Dict[str, Any]]] = None,
silent: bool = True,
do_finetune: bool = True, # finetune the sentence transformer on the cosine thing
do_fitclf: bool = True, # if true, we train the haed+(encoder|None) on the actual classification task
do_fitclf_trainencoder: bool = True, # if true it makes sure that the model also trains when doing fitclf
):
"""
We be overwritin'
"""
if trial: # Trial and model initialization
self._hp_search_setup(
trial
) # sets trainer parameters and initializes model
if self.train_dataset is None:
raise ValueError(
"Training requires a `train_dataset` given to the `SetFitTrainer` initialization."
)
self._validate_column_mapping(self.train_dataset)
train_dataset = self.train_dataset
if self.column_mapping is not None:
logger.info("Applying column mapping to training dataset")
train_dataset = self._apply_column_mapping(
self.train_dataset, self.column_mapping
)
x_train = train_dataset["text"]
y_train = train_dataset["label"]
if self.loss_class is None:
logger.warning(
"No `loss_class` detected! Using `CosineSimilarityLoss` as the default."
)
self.loss_class = losses.CosineSimilarityLoss
num_epochs = num_epochs or self.num_epochs
batch_size = batch_size or self.batch_size
# batch_size = batch_size or self.batch_size
learning_rate = learning_rate or self.learning_rate
# If head is logclf -> always do this: why??
if (not self.model.has_differentiable_head or self._freeze) and (do_finetune):
# sentence-transformers adaptation
train_examples = []
for _ in range(self.num_iterations):
train_examples = sentence_pairs_generation(
np.array(x_train), np.array(y_train), train_examples
)
train_dataloader = DataLoader(
train_examples, shuffle=True, batch_size=batch_size
)
train_loss = self.loss_class(self.model.model_body)
total_train_steps = len(train_dataloader) * num_epochs
if not silent:
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_examples)}")
logger.info(f" Num epochs = {num_epochs}")
logger.info(f" Total optimization steps = {total_train_steps}")
logger.info(f" Total train batch size = {batch_size}")
warmup_steps = math.ceil(total_train_steps * self.warmup_proportion)
self.model.model_body.fit(
train_objectives=[(train_dataloader, train_loss)],
epochs=num_epochs_finetune,
optimizer_params={"lr": learning_rate},
warmup_steps=warmup_steps,
show_progress_bar=not silent,
use_amp=self.use_amp,
)
if do_fitclf:
# Train the final classifier
if not do_fitclf_trainencoder:
self.model.freeze("body")
# y_train = np.array(y_train, dtype=np.float)
self.model.fit(
x_train,
y_train,
num_epochs=num_epochs,
batch_size=batch_size,
learning_rate=learning_rate, # for the head or for both head and body
body_learning_rate=body_learning_rate, # for model body
l2_weight=l2_weight,
max_length=max_length,
show_progress_bar=True,
)