-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathQVAE.py
282 lines (233 loc) · 12.5 KB
/
QVAE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
from pyexpat.errors import XML_ERROR_RESERVED_PREFIX_XML
from re import A
import numpy as np
from qiskit.circuit import ParameterVector
from qiskit.algorithms.optimizers import COBYLA, SPSA, ADAM
import qiskit.quantum_info as qi
from qiskit.utils import algorithm_globals
#algorithm_globals.random_seed = 0
import math
import core
import preprocessing
from math import comb
import time as time
import copy
import os
abspath = os.path.abspath('__file__')
dname = os.path.dirname(abspath)
os.chdir(dname)
import sys
import argparse
#for performance metrics
from sklearn.metrics import confusion_matrix, roc_curve, auc
# %% parsing
if __name__=="__main__":
parser = argparse.ArgumentParser(description="Simulate a QNN with the appropriate hyperparameters.")
parser.add_argument('-e','--epochs', required=False, type=int, help='the desired number of epochs to run', default=10)
parser.add_argument('-p','--patience', required=False, type=int, help='upper limit for the patience counter used in validation', default=5)
parser.add_argument('--num_layers', required = False, type=int, help='determines the number of alternating layers in the circuit', default=3)
parser.add_argument('-i', '--import_data', required=True, help='name of the input files')
parser.add_argument('--import_path', required=True, help='path to the input file')
parser.add_argument('--partition_size', required=False, help='sets partition size for splitting data into train and test sets (scales the partition_ratio arg)', default='max')
parser.add_argument('--partition_ratio', required=False, type=str, help="governs the ration of partition sizes in the training and test sets. a list of the form [train, test]", default="0.7:0.3")
parser.add_argument('-o','--optimizer', required=False, type=str, help='determines the Qiskit optimizer used in qnn', default='cobyla')
parser.add_argument('-x','--shots', required=False, type=int, help="the number of shots per circuit simulation", default=100)
parser.add_argument('--shuffle', required=False, type=bool, help='determines whether to shuffle data before alternating', default=False)
parser.add_argument('--shuffleseed', required=False, type=int, help='a seed for use in shuffling the dataset, if left False and --shuffle=True, will be completely random', default=False)
parser.add_argument('-t','--num_trash_qubits', required=False, type=int, help='number of trash qubits, the first 0,...,N-1 qubits will be traced out in the latent space', default=1)
#parser.add_argument('--input_dim', required=False, type=int, help='customize the input data dimension, if zero the original input dimension is preserved', default=0)
parser.add_argument('--reconstruction_loss', required=False, type=str, help='choose between cross_entropy, fidelity, wasserstein and JSD', default='fidelity')
parser.add_argument('--beta_weight', required=False, type=float, help='the beta parameter that controlls the relative weight of the quantum entropy term in the objective', default=1.0)
parser.add_argument('--regularizer_type', required=False, type=str, help='choose between KLD, JSD and fidelity', default='JSD')
parser.add_argument('--num_auxiliary_encoder', required=False, type=int, help='number of auxiliary qubits in the encoder', default=0)
parser.add_argument('--num_auxiliary_decoder', required=False, type=int, help='number of auxiliary qubits in the decoder', default=0)
parser.add_argument('--global_state', action='store_true', help='whether a global quantum state is used')
parser.add_argument('--initial_point', required=False, help='initial parameter of the neural network', default=None)
parser.add_argument('--output_dir',required=False, help='output directory for reconstructed state and latent state',default=None)
args = parser.parse_args()
import_name = args.import_data
import_path = args.import_path
num_epoch=args.epochs
alternate = True
parsed_shots=args.shots
shuffle=args.shuffle
shuffleseed = args.shuffleseed
n_layers = args.num_layers
partition_size=args.partition_size
if partition_size != 'max':
parition_size = int(partition_size)
ratio = args.partition_ratio.split(":")
ratio = [float(entry) for entry in ratio]
######### QVAE specific parameters
trash_qubits=list(range(args.num_trash_qubits))
reconstruction_loss=args.reconstruction_loss
if reconstruction_loss not in ['cross_entropy','fidelity','wasserstein','JSD']:
reconstruction_loss='fidelity'
print('reconstruction loss choice not recognized, using fidelity loss')
beta_weight=args.beta_weight
regularizer_type=args.regularizer_type
if regularizer_type not in ['KLD','JSD','fidelity']:
print('divergence type not recognized, use JSD instead')
regularizer_type='JSD'
num_auxiliary_encoder=args.num_auxiliary_encoder
num_auxiliary_decoder=args.num_auxiliary_decoder
##########
if args.optimizer.lower() == 'cobyla':
optimizer = COBYLA
elif args.optimizer.lower() == 'spsa':
optimizer = SPSA
elif args.optimizer.lower() == 'adam':
optimizer = ADAM
else:
print("problem with parsing optimizer, defaulting to COBYLA")
optimizer = COBYLA
'''
dataset = preprocessing.import_dataset(import_name,'classical',shuffle, shuffleseed)
maxData = preprocessing.get_max_data(import_name)
minData = preprocessing.get_min_data(import_name)
if alternate:
dataset = preprocessing.alternate_g(dataset)
dataset = preprocessing.get_uq_g(dataset)
print(f"using dataset of length {len(dataset)}")
if partition_size != 'max':
partition_split = int(partition_size)
else:
partition_split=len(dataset)
print(f'using partition size of {partition_split}')
train_set, test_set = preprocessing.train_test(dataset, partition_split, ratio)
train_len = len(train_set)
print("for training:")
preprocessing.get_info_g(train_set, True)
print("for testing:")
preprocessing.get_info_g(test_set, True)
test_len = len(test_set)
Xtrain, ytrain = preprocessing.convert_for_qiskit_classical(train_set)
Xtest, ytest = preprocessing.convert_for_qiskit_classical(test_set)
if args.input_dim==0:
n_dim=len(Xtrain[0])
else:
n_dim=args.input_dim
Xtrain=((Xtrain-minData)/(maxData-minData)*np.pi).T[:n_dim].T
Xtest=((Xtest-minData)/(maxData-minData)*np.pi).T[:n_dim].T
Xtrain=preprocessing.normalize_amplitude(Xtrain)
Xtest=preprocessing.normalize_amplitude(Xtest)
'''
Xtrain=np.loadtxt(import_path+'/Xtrain_'+import_name)
Xtest=np.loadtxt(import_path+'/Xtest_'+import_name)
ytrain=np.loadtxt(import_path+'/ytrain_'+import_name)
ytest=np.loadtxt(import_path+'/ytest_'+import_name)
if partition_size != 'max':
train_size=int(int(partition_size)*ratio[0])
test_size=int(int(partition_size)*ratio[1])
Xtrain=Xtrain[:train_size]
Xtest=Xtest[:test_size]
ytrain=ytrain[:train_size]
ytest=ytest[:test_size]
#######################
##### circuit def #####
#######################
n_features = len(Xtrain[0])
n_qubit = math.log2(n_features)
assert(int(n_qubit)==n_qubit)
n_qubit=int(n_qubit)
x_params = ParameterVector('x',n_features)
# for encoder
n_qubit_e=n_qubit+num_auxiliary_encoder
tmp_gates_e=comb(n_qubit_e,2) #number of gates for ising_interaction (zz) embedding, this number may change for another embedding
n_gates_e = (n_qubit_e+tmp_gates_e)*n_layers
# for decoder
n_qubit_d=n_qubit+num_auxiliary_decoder
tmp_gates_d=comb(n_qubit_d,2)
n_gates_d = (n_qubit_d+tmp_gates_d)*n_layers
theta_params = ParameterVector('theta', n_gates_e+n_gates_d)
num_encoder_params=n_gates_e
qc_e=core.encoder(n_layers,n_qubit,theta_params[:num_encoder_params],num_auxiliary_encoder)
qc_d=core.decoder(n_layers,n_qubit,theta_params[num_encoder_params:],num_auxiliary_decoder)
qnn = core.QVAE_NN(circuit=qc_e, encoder=qc_e,decoder=qc_d,input_params=x_params, weight_params=theta_params,num_encoder_params=num_encoder_params,trash_qubits=trash_qubits,num_auxiliary_encoder=num_auxiliary_encoder,num_auxiliary_decoder=num_auxiliary_decoder)
if args.initial_point!=None:
initial_point=[int(args.initial_point)]*qnn.num_weights
else:
initial_point=args.initial_point
model=core.QVAE_trainer(neural_network=qnn,optimizer=optimizer(maxiter=100),initial_point=initial_point,loss= 'squared_error',warm_start=True,reconstruction_loss=reconstruction_loss,beta=beta_weight,regularizer_type=regularizer_type)
### convert input into density matrices ###
Xtrain_dm=[]
Xtest_dm=[]
if args.global_state == True:
combined_state_tr=np.zeros((len(Xtrain[0]),len(Xtrain[0])))
combined_state_te=np.zeros((len(Xtest[0]),len(Xtest[0])))
for x in Xtrain:
Xtrain_dm.append(qi.DensityMatrix(x).data)
if args.global_state == True:
combined_state_tr=combined_state_tr+Xtrain_dm[-1]*1./len(Xtrain)
for x in Xtest:
Xtest_dm.append(qi.DensityMatrix(x).data)
if args.global_state == True:
combined_state_te=combined_state_te+Xtest_dm[-1]*1./len(Xtest)
if args.global_state == True:
Xtrain_origin=copy.deepcopy(Xtrain_dm)
Xtest_origin=copy.deepcopy(Xtest_dm)
if reconstruction_loss=='wasserstein':
Xtrain_pool=[]
Xtest_pool=[]
tr_eigenvalues, tr_eigenvectors = np.linalg.eig(combined_state_tr)
for tr_i,tr_eigenvalue in enumerate(tr_eigenvalues):
count=int(round(tr_eigenvalue.real,2)*100)
for i in range(count):
Xtrain_pool.append(qi.DensityMatrix(tr_eigenvectors[tr_i]).data)
te_eigenvalues, te_eigenvectors = np.linalg.eig(combined_state_te)
for te_i,te_eigenvalue in enumerate(te_eigenvalues):
count=int(round(te_eigenvalue.real,2)*100)
for i in range(count):
Xtest_pool.append(qi.DensityMatrix(te_eigenvectors[te_i]).data)
Xtrain=np.array(Xtrain_pool)
Xtest=np.array(Xtest_pool)
else:
Xtrain=np.array([combined_state_tr])
Xtest=np.array([combined_state_te])
else:
Xtrain=np.array(Xtrain_dm)
Xtest=np.array(Xtest_dm)
best_train_score=-sys.maxsize
for epoch in range(num_epoch):
print('start fitting')
model.fit(Xtrain, Xtrain)
this_train_score=model.score(Xtrain, Xtrain,reconstruction_loss)
this_train_fidelity=model.score(Xtrain, Xtrain,'fidelity')
print(epoch,'train fidelity:',this_train_fidelity,'train score:',this_train_score)
if this_train_score > best_train_score: #validation wrapper
best_train_epoch = epoch
best_train_score=this_train_score
best_model= copy.deepcopy(model)
patience_counter = 0
print(f"new best train score {best_train_score}")
else:
patience_counter+=1
if patience_counter == args.patience:
print("ran out of patience")
break
trainscore = best_model.score(Xtrain, Xtrain,'fidelity')
testscore = best_model.score(Xtest, Xtest,'fidelity')
print(f'best model train score: {trainscore}')
print(f'best model test score: {testscore}')
if args.output_dir!=None:
if args.global_state==True:
output_test_tmp,latent_test_tmp=best_model.predict(Xtest_origin)
output_train_tmp,latent_train_tmp=best_model.predict(Xtrain_origin)
else:
output_test_tmp,latent_test_tmp=best_model.predict(Xtest)
output_train_tmp,latent_train_tmp=best_model.predict(Xtrain)
output_train=[]
latent_train=[]
output_test=[]
latent_test=[]
for train_o,train_l,y in zip(output_train_tmp,latent_train_tmp,ytrain):
output_train.append(np.append(train_o.data.flatten(),y))
latent_train.append(np.append(train_l.data.flatten(),y))
for test_o,test_l,y in zip(output_test_tmp,latent_test_tmp,ytest):
output_test.append(np.append(test_o.data.flatten(),y))
latent_test.append(np.append(test_l.data.flatten(),y))
os.mkdir('./'+args.output_dir)
np.savetxt(args.output_dir+'/reconstruct_train.dat', output_train)
np.savetxt(args.output_dir+'/latent_train.dat', latent_train)
np.savetxt(args.output_dir+'/reconstruct_test.dat', output_test)
np.savetxt(args.output_dir+'/latent_test.dat', latent_test)