-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocessing.py
189 lines (162 loc) · 5.07 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#%% Imports
import torch
from torch.autograd import Function
import torch.nn as nn
import qiskit.quantum_info as qi
from qiskit import QuantumCircuit, Aer, execute
from qiskit.circuit import Parameter
from qiskit.extensions import UnitaryGate
import numpy as np
from numpy import pi
import collections
import random
import pandas as pd
import multiprocessing as mp
from functools import partial
from sklearn.metrics import auc, roc_curve, confusion_matrix
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_val_score
def normalize(v):
norm=np.linalg.norm(v)
if norm==0:
norm=np.finfo(v.dtype).eps
return np.array(v/norm)
def normalize_amplitude(X):
X_norm=[]
for x in X:
X_norm.append(normalize(x))
return np.array(X_norm)
#%% Function definitions specific to the MNIST problem
def get_uq_g(dataset):
"""Removes all duplicate and conflicting inputs from a dataset."""
uq = []
num_0 = 0
num_1 = 0
num_overlap = 0
dict = collections.defaultdict(set)
for data, label in dataset:
key = tuple(data.flatten().tolist())
dict[key].add(label)
for item in dataset:
data, label = item
key = tuple(data.flatten().tolist())
if dict[key] == {0}:
num_0 +=1
uq.append(item)
elif dict[key] == {1}:
num_1 +=1
uq.append(item)
elif dict[key] == {0,1}:
num_overlap +=1
else:
print("Error with item", item)
break
return uq
#%% Function definitions specific to the genomics dataset
def array_to_dataset(array,input_type):
"""Converts data arrays into appropriate form for use in QNN. Assumes each entry in array is a seperate datapoint w the last column corresponding to label."""
dataset = []
if input_type=='classical':
for entry in array:
input = torch.tensor(entry[:len(entry)-1])
label = int(entry[len(entry)-1])
dataset.append((input,label))
elif input_type=='quantum':
dim=int(np.sqrt(len(array[0])-1))
for entry in array:
input=np.zeros((dim,dim),dtype=complex)
for row in range(dim):
for col in range(dim):
input[row][col]=entry[row*dim+col]
label = int(entry[len(entry)-1].real) #.real to avoid warning
dataset.append((input,label))
return dataset
def get_max_data(filename):
X = (np.loadtxt(filename).T[:-1]).T
return (max(X.flatten())).round(5)
def get_min_data(filename):
X = (np.loadtxt(filename).T[:-1]).T
return (min(X.flatten())).round(5)
def import_dataset(filename,input_type, shuffle=False, shuffleseed=False):
if input_type=='classical':
array = np.loadtxt(filename)
elif input_type=='quantum':
f = open(filename, "r").read().splitlines()
array=[]
for d in f:
array_tmp=np.zeros((len(d.split())),dtype=complex)
for index_i,i in enumerate(d.split()):
array_tmp[index_i]=complex(i)
array.append(array_tmp)
if shuffle:
if shuffleseed==False:
np.random.shuffle(array)
else:
np.random.seed(shuffleseed)
np.random.shuffle(array)
return array_to_dataset(array,input_type)
def train_test(dataset, scale, ratio):
part1 = int(scale*ratio[0])
part2 = part1 + int(scale*ratio[1])
train = dataset[:part1]
test = dataset[part1:part2]
return (train, test)
def get_info_g(dataset, verbose=False):
"""Determines the number of inputs labeled one and zero in a dataset."""
zeros = 0
ones = 0
for data in dataset:
input, label = data
if label == 0:
zeros+=1
elif label ==1:
ones+=1
if verbose:
print(f'In this dataset, there are {zeros} inputs labeled "0" and {ones} inputs labeled "1".')
return (ones, zeros)
def alternate_g(dataset):
ones, zeros = sort_dataset(dataset)
return coallated_dataset(ones, zeros)
def sort_dataset(dataset, a_label=1):
labeled_a = []
labeled_b = []
for data in dataset:
input, label = data
if label == a_label:
labeled_a.append(data)
else:
labeled_b.append(data)
return (labeled_a, labeled_b)
def coallated_dataset(set1, set2):
dataset = []
if len(set1)<len(set2):
length = len(set1)
else:
length = len(set2)
for i in range(length):
dataset.append(set1[i])
dataset.append(set2[i])
return dataset
def convert_for_qiskit_dm(dataset):
X = []
y = []
for input, label in dataset:
X.append(input)
y.append(label)
return(X,y)
def convert_for_qiskit_classical(dataset):
X = []
y = []
for input, label in dataset:
input = input.numpy()
input = input.round(5)
X.append(input)
y.append(label)
X = np.array(X)
y = np.array(y)
return(X,y)
def vector_to_DensityMatrix(X):
X_dm=[]
for x in X:
X_dm.append(qi.DensityMatrix(x))
return X_dm