Open
Description
Hi, I am testing out the timing of different compute kernels. I use the same timing method as in the compute example to get the compute pass time. I also do a simple std::time::Instant timer from before the .commit() to after the .wait_until_completed() and my CPU timer ends up being around 12x longer than the CPU timer. There really shouldn't be any copying between CPU and GPU here, so the only thing I can think of is waiting to dispatch the kernel, but I can't imagine it takes 14ms!
Here is my entire reproducable example:
use metal::{
objc::rc::autoreleasepool, Buffer, BufferRef, CommandBufferRef, CompileOptions,
ComputeCommandEncoderRef, ComputePassDescriptor, ComputePassDescriptorRef,
ComputePipelineDescriptor, ComputePipelineState, CounterSampleBuffer, CounterSampleBufferRef,
Device, MTLCommandBufferStatus, MTLResourceOptions, MTLSize, NSRange,
};
use rand::{rngs::StdRng, Rng, SeedableRng};
const NUM_SAMPLES: u64 = 10;
const NAIEVE_SHADER: &str = "
#include <metal_stdlib>
using namespace metal;
kernel void matmul(
device float *A [[buffer(0)]],
device float *B [[buffer(1)]],
device float *C [[buffer(2)]],
device uint& M [[buffer(3)]],
device uint& N [[buffer(4)]],
device uint& K [[buffer(5)]],
threadgroup float* shared_memory [[threadgroup(0)]],
uint3 global_pos [[thread_position_in_grid]],
uint3 local_pos [[thread_position_in_threadgroup]],
uint3 block_pos [[threadgroup_position_in_grid]],
uint3 block_size[[threads_per_threadgroup]]
) {
if (global_pos.x < N && global_pos.y < M) {
float value = 0.0f;
for(int i = 0; i < K; ++i) {
value = fast::fma(A[global_pos.y * K + i], B[i * N + global_pos.x], value);
}
C[global_pos.y * N + global_pos.x] = value;
}
}";
const TILED_SHADER: &str = "
#include <metal_stdlib>
using namespace metal;
kernel void tiled_matmul(
device float *A [[buffer(0)]],
device float *B [[buffer(1)]],
device float *C [[buffer(2)]],
device uint& M [[buffer(3)]],
device uint& N [[buffer(4)]],
device uint& K [[buffer(5)]],
threadgroup float* shared_memory [[threadgroup(0)]],
uint3 global_pos [[thread_position_in_grid]],
uint3 local_pos [[thread_position_in_threadgroup]],
uint3 block_pos [[threadgroup_position_in_grid]],
uint3 block_size[[threads_per_threadgroup]]
) {
float sum = 0.0f;
if (global_pos.y >= M || global_pos.x >= N) return;
for (int m = 0; m < (K + block_size.x - 1) / block_size.x; ++m) {
if (m * block_size.x + local_pos.x < K) {
shared_memory[local_pos.y * block_size.x + local_pos.x] = A[global_pos.y * K + m * block_size.x + local_pos.x];
} else {
shared_memory[local_pos.y * block_size.x + local_pos.x] = 0.0f;
}
if (m * block_size.y + local_pos.y < K) {
shared_memory[(block_size.y + local_pos.y) * block_size.x + local_pos.x] = B[(m * block_size.y + local_pos.y) * N + global_pos.x];
} else {
shared_memory[(block_size.y + local_pos.y) * block_size.x + local_pos.x] = 0.0f;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
for (int e = 0; e < block_size.x; ++e) {
sum = fast::fma(shared_memory[local_pos.y * block_size.x + e], shared_memory[(block_size.y + e) * block_size.x + local_pos.x], sum);
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
C[global_pos.y * N + (global_pos.x)] = sum;
}";
const PREFETCH_SHADER: &str = "
#include <metal_stdlib>
using namespace metal;
kernel void prefetch_matmul(
device float *A [[buffer(0)]],
device float *B [[buffer(1)]],
device float *C [[buffer(2)]],
device uint& M [[buffer(3)]],
device uint& N [[buffer(4)]],
device uint& K [[buffer(5)]],
threadgroup float* shared_memory [[threadgroup(0)]],
uint3 global_pos [[thread_position_in_grid]],
uint3 local_pos [[thread_position_in_threadgroup]],
uint3 block_pos [[threadgroup_position_in_grid]],
uint3 block_size[[threads_per_threadgroup]]
) {
if (global_pos.y >= M || global_pos.x >= N) return;
float sum = 0.0f;
threadgroup float* tile0 = shared_memory;
threadgroup float* tile1 = shared_memory + block_size.x * block_size.y * 2;
if (local_pos.x < K) {
tile0[local_pos.y * block_size.x + local_pos.x] = A[global_pos.y * K + local_pos.x];
} else {
tile0[local_pos.y * block_size.x + local_pos.x] = 0.0f;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
for (int m = 1; m < (K + block_size.x - 1) / block_size.x; ++m) {
if (m * block_size.x + local_pos.x < K) {
tile1[local_pos.y * block_size.x + local_pos.x] = A[global_pos.y * K + m * block_size.x + local_pos.x];
} else {
tile1[local_pos.y * block_size.x + local_pos.x] = 0.0f;
}
for (int e = 0; e < block_size.x; ++e) {
sum = fast::fma(tile0[local_pos.y * block_size.x + e], B[(m - 1) * block_size.y * N + e * N + global_pos.x], sum);
}
threadgroup_barrier(mem_flags::mem_threadgroup);
threadgroup float* temp = tile0;
tile0 = tile1;
tile1 = temp;
}
C[global_pos.y * N + global_pos.x] = sum;
}";
fn run(
a_buffer: &Buffer,
b_buffer: &Buffer,
shader: &ComputePipelineState,
dev: &Device,
mat_size: usize,
) -> Option<(Vec<f32>, f32, f32)> {
autoreleasepool(|| {
let mut cpu_start = 0;
let mut gpu_start = 0;
dev.sample_timestamps(&mut cpu_start, &mut gpu_start);
let counter_sample_buffer = create_counter_sample_buffer(dev);
let destination_buffer = dev.new_buffer(
(std::mem::size_of::<u64>() * NUM_SAMPLES as usize) as u64,
MTLResourceOptions::StorageModeManaged,
);
let c_buffer = dev.new_buffer(
(mat_size * mat_size * std::mem::size_of::<f32>()) as u64,
MTLResourceOptions::StorageModeManaged,
);
let command_queue = dev.new_command_queue();
let command_buffer = command_queue.new_command_buffer();
let compute_pass_descriptor = ComputePassDescriptor::new();
handle_compute_pass_sample_buffer_attachment(
compute_pass_descriptor,
&counter_sample_buffer,
);
let encoder =
command_buffer.compute_command_encoder_with_descriptor(compute_pass_descriptor);
encoder.set_compute_pipeline_state(shader);
encoder.set_buffer(0, Some(a_buffer), 0);
encoder.set_buffer(1, Some(b_buffer), 0);
encoder.set_buffer(2, Some(&c_buffer), 0);
set_input_u32(encoder, 3, mat_size as u64);
set_input_u32(encoder, 4, mat_size as u64);
set_input_u32(encoder, 5, mat_size as u64);
let thread_block_size = 32;
encoder.set_threadgroup_memory_length(
0,
thread_block_size * thread_block_size * std::mem::size_of::<f32>() as u64,
);
encoder.dispatch_thread_groups(
MTLSize {
width: (mat_size as u64 + thread_block_size - 1) / thread_block_size,
height: (mat_size as u64 + thread_block_size - 1) / thread_block_size,
depth: 1,
},
MTLSize {
width: thread_block_size,
height: thread_block_size,
depth: 1,
},
);
encoder.end_encoding();
resolve_samples_into_buffer(command_buffer, &counter_sample_buffer, &destination_buffer);
let now = std::time::Instant::now();
command_buffer.commit();
command_buffer.wait_until_completed();
let millis = now.elapsed().as_millis();
let mut cpu_end = 0;
let mut gpu_end = 0;
dev.sample_timestamps(&mut cpu_end, &mut gpu_end);
match command_buffer.status() {
MTLCommandBufferStatus::Completed => Some((
copy_from_buffer(&c_buffer),
handle_timestamps(&destination_buffer, cpu_start, cpu_end, gpu_start, gpu_end),
millis as f32,
)),
_ => None,
}
})
}
fn main() {
autoreleasepool(|| {
let mat_size = 8192;
let iters = 100;
let mut rng = StdRng::seed_from_u64(0);
let a_data: Vec<f32> = (0..(mat_size * mat_size))
.map(|_| rng.gen_range(-0.5..0.5))
.collect();
let b_data: Vec<f32> = (0..(mat_size * mat_size))
.map(|_| rng.gen_range(-0.5..0.5))
.collect();
let dev = Device::system_default().unwrap();
let a_buffer = copy_to_buffer(&a_data, &dev);
let b_buffer = copy_to_buffer(&b_data, &dev);
let shader = compile_function("matmul", NAIEVE_SHADER, &dev);
let mut data: Option<Vec<f32>> = None;
let mut successes = 0;
let mut total_gpu_time = 0.0;
let mut total_cpu_time = 0.0;
for _ in 0..iters {
let curr_data = run(&a_buffer, &b_buffer, &shader, &dev, mat_size);
if let Some((curr_data, gpu_time, cpu_time)) = curr_data {
successes += 1;
total_gpu_time += gpu_time;
total_cpu_time += cpu_time;
match &mut data {
Some(d) => {
for (i, (a, b)) in d.iter().zip(curr_data.iter()).enumerate() {
if (*a - *b).abs() > 1e-5 {
println!("Index {i} A: {a} B: {b}");
}
}
}
None => {
data = Some(curr_data);
}
}
}
}
println!(
"Naive CPU: {}ms GPU: {}ms",
total_cpu_time / successes as f32,
total_gpu_time / successes as f32
);
let shader = compile_function("tiled_matmul", TILED_SHADER, &dev);
let mut successes = 0;
let mut total_gpu_time = 0.0;
let mut total_cpu_time = 0.0;
for _ in 0..iters {
let curr_data = run(&a_buffer, &b_buffer, &shader, &dev, mat_size);
if let Some((curr_data, gpu_time, cpu_time)) = curr_data {
successes += 1;
total_gpu_time += gpu_time;
total_cpu_time += cpu_time;
match &mut data {
Some(d) => {
for (i, (a, b)) in d.iter().zip(curr_data.iter()).enumerate() {
if (*a - *b).abs() > 1e-5 {
println!("Index {i} A: {a} B: {b}");
}
}
}
None => {
data = Some(curr_data);
}
}
}
}
println!(
"Tiled CPU: {}ms GPU: {}ms",
total_cpu_time / successes as f32,
total_gpu_time / successes as f32
);
let shader = compile_function("prefetch_matmul", PREFETCH_SHADER, &dev);
let mut successes = 0;
let mut total_gpu_time = 0.0;
let mut total_cpu_time = 0.0;
for _ in 0..iters {
let curr_data = run(&a_buffer, &b_buffer, &shader, &dev, mat_size);
if let Some((curr_data, gpu_time, cpu_time)) = curr_data {
successes += 1;
total_gpu_time += gpu_time;
total_cpu_time += cpu_time;
match &mut data {
Some(d) => {
for (i, (a, b)) in d.iter().zip(curr_data.iter()).enumerate() {
if (*a - *b).abs() > 1e-5 {
println!("Index {i} A: {a} B: {b}");
}
}
}
None => {
data = Some(curr_data);
}
}
}
}
println!(
"Prefetch CPU: {}ms GPU: {}ms",
total_cpu_time / successes as f32,
total_gpu_time / successes as f32
);
})
}
fn set_input_u32(encoder: &ComputeCommandEncoderRef, num: u32, index: u64) {
encoder.set_bytes(
index,
std::mem::size_of::<u32>() as u64,
&(num) as *const u32 as *const _,
);
}
fn copy_to_buffer(v: &[f32], dev: &Device) -> Buffer {
dev.new_buffer_with_data(
unsafe { std::mem::transmute(v.as_ptr()) },
std::mem::size_of_val(v) as u64,
MTLResourceOptions::StorageModeManaged,
)
}
fn copy_from_buffer(buffer: &Buffer) -> Vec<f32> {
let mut data = vec![0.0; buffer.length() as usize / std::mem::size_of::<f32>()];
let ptr = buffer.contents() as *mut f32;
for (i, d) in data.iter_mut().enumerate() {
*d = unsafe { *ptr.add(i) };
}
data
}
fn compile_function(name: &str, code: &str, device: &Device) -> ComputePipelineState {
let library = device
.new_library_with_source(code, &CompileOptions::new())
.unwrap();
let pipeline_state_descriptor = ComputePipelineDescriptor::new();
pipeline_state_descriptor
.set_compute_function(Some(&library.get_function(name, None).unwrap()));
device
.new_compute_pipeline_state_with_function(
pipeline_state_descriptor.compute_function().unwrap(),
)
.unwrap()
}
fn handle_compute_pass_sample_buffer_attachment(
compute_pass_descriptor: &ComputePassDescriptorRef,
counter_sample_buffer: &CounterSampleBufferRef,
) {
let sample_buffer_attachment_descriptor = compute_pass_descriptor
.sample_buffer_attachments()
.object_at(0)
.unwrap();
sample_buffer_attachment_descriptor.set_sample_buffer(counter_sample_buffer);
sample_buffer_attachment_descriptor.set_start_of_encoder_sample_index(0);
sample_buffer_attachment_descriptor.set_end_of_encoder_sample_index(1);
}
fn resolve_samples_into_buffer(
command_buffer: &CommandBufferRef,
counter_sample_buffer: &CounterSampleBufferRef,
destination_buffer: &BufferRef,
) {
let blit_encoder = command_buffer.new_blit_command_encoder();
blit_encoder.resolve_counters(
counter_sample_buffer,
NSRange::new(0_u64, NUM_SAMPLES),
destination_buffer,
0_u64,
);
blit_encoder.end_encoding();
}
fn handle_timestamps(
resolved_sample_buffer: &BufferRef,
cpu_start: u64,
cpu_end: u64,
gpu_start: u64,
gpu_end: u64,
) -> f32 {
let samples = unsafe {
std::slice::from_raw_parts(
resolved_sample_buffer.contents() as *const u64,
NUM_SAMPLES as usize,
)
};
let pass_start = samples[0];
let pass_end = samples[1];
let cpu_time_span = cpu_end - cpu_start;
let gpu_time_span = gpu_end - gpu_start;
let millis = milliseconds_between_begin(pass_start, pass_end, gpu_time_span, cpu_time_span);
millis as f32
}
fn milliseconds_between_begin(begin: u64, end: u64, gpu_time_span: u64, cpu_time_span: u64) -> f64 {
let time_span = (end as f64) - (begin as f64);
let nanoseconds = time_span / (gpu_time_span as f64) * (cpu_time_span as f64);
nanoseconds / 1_000_000.0
}
fn create_counter_sample_buffer(device: &Device) -> CounterSampleBuffer {
let counter_sample_buffer_desc = metal::CounterSampleBufferDescriptor::new();
counter_sample_buffer_desc.set_storage_mode(metal::MTLStorageMode::Shared);
counter_sample_buffer_desc.set_sample_count(NUM_SAMPLES);
let counter_sets = device.counter_sets();
let timestamp_counter = counter_sets.iter().find(|cs| cs.name() == "timestamp");
counter_sample_buffer_desc
.set_counter_set(timestamp_counter.expect("No timestamp counter found"));
device
.new_counter_sample_buffer_with_descriptor(&counter_sample_buffer_desc)
.unwrap()
}
And my output:
Naive CPU: 17.67ms GPU: 1.3157867ms
Tiled CPU: 14.56ms GPU: 1.3267895ms
Prefetch CPU: 14.65ms GPU: 1.2971923ms