-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathch3.R
860 lines (626 loc) · 25.4 KB
/
ch3.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
# 環境の初期化 ----------------------------------------------------------
rm(list = ls())
## -------------------------------------------------------------------------------------------
# サイコロを振る回数
iter <- 8
# サイコロを振った結果、観測しうる、1~6の整数
dice <- 1:6
set.seed(123) # 乱数の種
for (i in 1:iter) {
# diceからランダムにいずれかの数値を抽出して、xに代入
x <- sample(dice, size = 1)
# Xに代入された数値(実現値)を表示
print(x)
}
## -------------------------------------------------------------------------------------------
iter <- 8 # 平均値を求める回数
n <- 2 # 復元抽出する個数
dice <- 1:6
set.seed(123)
for (i in 1:iter) {
# diceからランダムにn個の数値を復元抽出し、それらの平均をxに代入
x <- sample(dice, size = n, replace = TRUE) |> mean()
print(x)
}
## -------------------------------------------------------------------------------------------
n <- 1000
dice <- 1:6
set.seed(123)
sample(dice, size = n, replace = TRUE, prob = c(0.1, 0.1, 0.1, 0.1, 0.3, 0.3)) |>
table()
## -------------------------------------------------------------------------------------------\
### エラーが出ます
n <- 8 # 非復元抽出する個数
set.seed(123) # 乱数の種
# diceからランダムにn個の数値を非復元抽出
x <- sample(dice, size = n, replace = FALSE)
## -------------------------------------------------------------------------------------------
d_unif <- function(x, alpha, beta) {
if (alpha <= x & x <= beta) {
probability <- 1 / (beta - alpha + 1)
} else {
probability <- 0
}
return(probability)
}
## -------------------------------------------------------------------------------------------
## install.packages("extraDistr") # 未インストールの場合は最初に一度実行する
library(extraDistr) # パッケージの読み込み
extraDistr::ddunif(x = 1:1, min = 1, max = 6) |> sum() # ddunif()では、αはmin, βはmaxという引数名
extraDistr::ddunif(x = 0:1, min = 1, max = 6) |> sum()
extraDistr::ddunif(x = 1:6, min = 1, max = 6) |> sum()
## -------------------------------------------------------------------------------------------
## install.packages("extraDistr") # 未インストールの場合は最初に一度実行する
library(extraDistr) # パッケージの読み込み
# ddunif()では、αはmin, βはmaxという引数名
extraDistr::ddunif(x = 1:1, min = 1, max = 6) |> sum()
extraDistr::ddunif(x = 0:1, min = 1, max = 6) |> sum()
extraDistr::ddunif(x = 1:6, min = 1, max = 6) |> sum()
## -------------------------------------------------------------------------------------------
curve(dnorm, xlim = c(-5, 5), ylab = "density")
## ---- echo = FALSE--------------------------------------------------------------------------
mu <- 0
sigma <- 1
lower <- -0.5
upper <- 0.5
curve(dnorm(x), xlim = c(-5, 5), xlab = "", ylab = "")
fill_x <- seq(
from = (mu + lower * sigma),
to = (mu + upper * sigma), length = 100
)
polygon(
x = c((mu + lower * sigma), fill_x, (mu + upper * sigma)),
y = c(0, dnorm(fill_x, mean = mu, sd = sigma), 0),
col = "grey"
)
title(
xlab = "x",
ylab = "density"
)
## -------------------------------------------------------------------------------------------
integrate(f = dnorm, lower = -0.5, upper = 0.5)
## ---- echo = FALSE--------------------------------------------------------------------------
mu <- 0
sigma <- 1
lower <- 1
upper <- 2
curve(dnorm(x), xlim = c(-5, 5), xlab = "", ylab = "")
fill_x <- seq(
from = (mu + lower * sigma),
to = (mu + upper * sigma), length = 100
)
polygon(
x = c((mu + lower * sigma), fill_x, (mu + upper * sigma)),
y = c(0, dnorm(fill_x, mean = mu, sd = sigma), 0),
col = "grey"
)
title(
xlab = "x",
ylab = "density"
)
## -------------------------------------------------------------------------------------------
integrate(f = dnorm, lower = 1, upper = 2)
## -------------------------------------------------------------------------------------------
mu <- 0
sigma <- 1
lower <- -5
upper <- -1.96
curve(dnorm(x), xlim = c(-5, 5), xlab = "", ylab = "")
fill_x <- seq(
from = (mu + lower * sigma),
to = (mu + upper * sigma), length = 100
)
polygon(
x = c((mu + lower * sigma), fill_x, (mu + upper * sigma)),
y = c(0, dnorm(fill_x, mean = mu, sd = sigma), 0),
col = "grey"
)
title(
xlab = "x",
ylab = "density"
)
## -------------------------------------------------------------------------------------------
pnorm(q = -1.96)
## -------------------------------------------------------------------------------------------
pnorm(0.5) - pnorm(-0.5)
## -------------------------------------------------------------------------------------------
pnorm(Inf) # Infは∞を表す
## ---- echo = FALSE--------------------------------------------------------------------------
mu <- 0
sigma <- 1
lower <- 1.96 # qに相当
upper <- 5
curve(dnorm(x), xlim = c(-5, 5), xlab = "", ylab = "")
fill_x <- seq(
from = (mu + lower * sigma),
to = (mu + upper * sigma), length = 100
)
polygon(
x = c((mu + lower * sigma), fill_x, (mu + upper * sigma)),
y = c(0, dnorm(fill_x, mean = mu, sd = sigma), 0),
col = "grey"
)
title(
xlab = "x",
ylab = "density"
)
## -------------------------------------------------------------------------------------------
1 - pnorm(q = 1.96)
## ---- echo = FALSE--------------------------------------------------------------------------
mu <- 0
sigma <- 1
lower <- 0.9999
upper <- 1.0001
curve(dnorm(x), xlim = c(-5, 5), xlab = "", ylab = "")
fill_x <- seq(
from = (mu + lower * sigma),
to = (mu + upper * sigma), length = 100
)
polygon(
x = c((mu + lower * sigma), fill_x, (mu + upper * sigma)),
y = c(0, dnorm(fill_x, mean = mu, sd = sigma), 0),
col = "grey"
)
title(
xlab = "x",
ylab = "density"
)
## -------------------------------------------------------------------------------------------
pnorm(1) - pnorm(1)
## ---- eval = FALSE--------------------------------------------------------------------------
curve(dnorm(x), xlim = c(-5, 5), xlab = "", ylab = "")
x <- seq(-5, 5, length = 200)
lines(x = x, y = dnorm(x, mean = 0, sd = 2), lty = 2)
lines(x = x, y = dnorm(x, mean = 2, sd = 1), lty = 3)
title(
xlab = "x",
ylab = "density"
)
legend("topleft",
legend = c("μ = 0, σ = 1", "μ = 0, σ = 2", "μ = 2, σ = 1"),
lty = 1:3
)
## -------------------------------------------------------------------------------------------
pnorm(q = -1.96) # 標準正規分布
# μ = 0, σ = 2の正規分布
pnorm(q = -1.96, mean = 0, sd = 2)
# μ = 2, σ = 1の正規分布
pnorm(q = -1.96, mean = 2, sd = 1)
## -------------------------------------------------------------------------------------------
qnorm(p = 0.025) # 標準正規分布における2.5パーセンタイル値
# μ = 0, σ = 2の正規分布における16.35475パーセンタイル値
qnorm(p = 0.1635475, mean = 0, sd = 2)
# μ = 2, σ = 1の正規分布における0.003748053パーセンタイル値
qnorm(p = 3.748053e-05, mean = 2, sd = 1)
## -------------------------------------------------------------------------------------------
set.seed(123)
runif(n = 5, min = 1, max = 6)
## -------------------------------------------------------------------------------------------
# 描画する関数の準備
mc_demo <- function() {
curve(dnorm(x), xlim = c(-5, 5), xlab = "", ylab = "")
fill_x <- seq(from = -1.96, to = 1.96, length = 100)
polygon(
x = c(-1.96, fill_x, 1.96),
y = c(0, dnorm(fill_x, mean = 0, sd = 1), 0),
col = "grey"
)
title(xlab = "x", ylab = "density")
}
mc_demo() # 描画
## -------------------------------------------------------------------------------------------
integrate(dnorm, lower = -1.96, upper = 1.96)
pnorm(q = 1.96) - pnorm(q = -1.96)
## -------------------------------------------------------------------------------------------
mc_demo()
rect(xleft = -4, ybottom = 0, xright = 4, ytop = 0.4, lwd = 2)
## -------------------------------------------------------------------------------------------
iter <- 20 # 生成する乱数の個数
set.seed(123)
# プロットする乱数のX軸上の座標
dots_x <- runif(n = iter, min = -4, max = 4)
# プロットする乱数のY軸上の座標
dots_y <- runif(n = iter, min = 0, max = 0.4)
mc_demo() # 自作関数を使用
rect(xleft = -4, ybottom = 0, xright = 4, ytop = 0.4, lwd = 2)
points(x = dots_x, y = dots_y, col = "black") # 点を描画
## -------------------------------------------------------------------------------------------
iter <- 500000 # 生成する乱数の個数
set.seed(123)
dots <- data.frame(
x = runif(n = iter, min = -4, max = 4), # プロットする乱数のX軸上の座標
y = runif(n = iter, min = 0, max = 0.4) # プロットする乱数のY軸上の座標
)
# subset()で灰色の領域内に落ちた乱数のみを抽出、nrow()で行数を計上
inner <- subset(
dots,
(dots$x > -1.96) & (dots$x < 1.96) & (dots$y < dnorm(dots$x))
) |>
nrow()
inner / iter # 全乱数のうち、灰色の領域内に落ちた乱数の割合
## -------------------------------------------------------------------------------------------
8 * 0.4 * 0.29679
## -------------------------------------------------------------------------------------------
(0.1 * 1) + (0.1 * 2) + (0.1 * 3) + (0.1 * 4) + (0.3 * 5) + (0.3 * 6)
## -------------------------------------------------------------------------------------------
x <- 1:6
# 3.1.2でインストールしたextraDistrパッケージを使用
(extraDistr::ddunif(x, 1, 6) * x) |> sum()
## -------------------------------------------------------------------------------------------
d_unif_exp <- function(x, alpha = 1, beta = 6) {
return(
dunif(x, min = alpha, max = beta) * x
)
}
integrate(f = d_unif_exp, lower = 1, upper = 6)
## -------------------------------------------------------------------------------------------
std_norm_exp <- function(x, mu = 0, sigma = 1) {
return(dnorm(x, mu, sigma) * x)
}
integrate(f = std_norm_exp, lower = -Inf, upper = Inf)
## -------------------------------------------------------------------------------------------
rnorm(100000) |> mean()
## -------------------------------------------------------------------------------------------
d_unif_var <- function(x, alpha = 1, beta = 6) {
expected_value <- mean(alpha:beta) # α = 1, β = 6の離散一様分布の期待値
return(
extraDistr::ddunif(x, min = alpha, max = beta) * (x - expected_value)^2
)
}
d_unif_var(x = 1:6) |> sum()
## -------------------------------------------------------------------------------------------
alpha <- 1
beta <- 6
((beta - alpha + 1)^2 - 1) / 12
## -------------------------------------------------------------------------------------------
std_norm_var <- function(x, mu = 0, sigma = 1) {
expected_value <- mu # 標準正規分布の期待値
return(
dnorm(x, mu, sigma) * (x - expected_value)^2
)
}
integrate(f = std_norm_var, lower = -Inf, upper = Inf)
## -------------------------------------------------------------------------------------------
### Ch2で作成した標本分散関数
var_p <- function(x) {
n <- length(x)
mean_x <- mean(x)
var_x <- sum((x - mean_x)^2) / n
return(var_x)
}
## -------------------------------------------------------------------------------------------
rnorm(100000) |> var_p() # 自作関数を使用
## -------------------------------------------------------------------------------------------
mu_x <- 0
sigma_x <- 10
mu_y <- 5
sigma_y <- 5
n <- 20000 # 生成する乱数の個数
set.seed(123)
# μ = 0, σ = 10の正規分布に従う乱数
x <- rnorm(n, mu_x, sigma_x)
# μ = 5, σ = 5の正規分布に従う乱数
y <- rnorm(n, mu_y, sigma_y)
z <- x + y
hist(z, breaks = 30, xlim = c(-70, 70), prob = TRUE)
line_x <- seq(min(z), max(z), length = 200)
lines(
x = line_x,
y = dnorm(line_x,
mean = mu_x + mu_y,
sd = sqrt(sigma_x^2 + sigma_y^2)
),
lwd = 2
)
## -------------------------------------------------------------------------------------------
mean(z) # 平均
var_p(z) # 分散(第2章で定義した自作関数を使用)
## -------------------------------------------------------------------------------------------
n <- 4
mu <- 50
sigma <- 10
iter <- 10000
mean <- rep(0, each = iter)
set.seed(123)
for (i in 1:iter) {
mean[i] <- rnorm(n, mu, sigma) |> mean()
}
# 平均のヒストグラム(灰色)
hist(mean, breaks = 30, prob = TRUE)
line_x <- seq(min(mean), max(mean), length = 200)
lines(x = line_x, y = dnorm(line_x, mu, sigma / sqrt(n)), lwd = 2)
## -------------------------------------------------------------------------------------------
k <- 2 # 試行回数
theta <- 0.3
# 引数sizeは試行回数k、引数probは成功確率θに対応
dbinom(x = 0:k, size = k, prob = theta)
## -------------------------------------------------------------------------------------------
n <- 10000 # 生成する二項分布に従う乱数の個数
k <- 2 # ベルヌーイ試行の回数
theta <- 0.3
set.seed(123)
rbinom(n = n, size = k, prob = theta) |>
hist(breaks = 30, main = paste("k =", k), xlab = "x")
## -------------------------------------------------------------------------------------------
n <- 10000 # 生成する二項分布に従う乱数の個数
k <- 2 # ベルヌーイ試行の回数
theta <- 0.3
set.seed(123)
rbinom(n = n, size = k, prob = theta) |>
hist(breaks = 30)
## -------------------------------------------------------------------------------------------
n <- 10000 # 生成する二項分布に従う乱数の個数
k <- 2000 # ベルヌーイ試行の回数
theta <- 0.24
mu <- k * theta # 正規分布のパラメータμ
sigma <- sqrt(k * theta * (1 - theta)) # 正規分布のパラメータσ
# 二項分布に従う乱数の生成 -------------
set.seed(123)
rnd <- rbinom(n = n, size = k, prob = theta)
hist(rnd, breaks = 30, prob = TRUE, main = paste("k =", k), xlab = "x")
# 正規分布の形状を曲線で表す -------------
line_x <- seq(min(rnd), max(rnd), length = 200)
lines(x = line_x, y = dnorm(line_x, mean = mu, sd = sigma), lwd = 2)
## -------------------------------------------------------------------------------------------
n <- 10
iter <- 10000
z2 <- rep(0, each = iter)
set.seed(123)
for (i in 1:iter) {
z2[i] <- rnorm(n)^2 |> sum()
}
hist(z2, breaks = 30, prob = TRUE)
line_x <- seq(min(z2), max(z2), length = 200)
lines(x = line_x, y = dchisq(line_x, df = n), lwd = 2)
## -------------------------------------------------------------------------------------------
nu_1 <- 20
nu_2 <- 30
n <- 10000
set.seed(123)
chisq_1 <- rchisq(n, df = nu_1)
chisq_2 <- rchisq(n, df = nu_2)
chisq_all <- chisq_1 + chisq_2 # 二つのχ2乗分布に従う確率変数の和
hist(chisq_all, breaks = 30, prob = TRUE)
line_x <- seq(min(chisq_all), max(chisq_all), length = n)
# 自由度ν_1 + ν_2のχ2乗分布を曲線で描画
lines(x = line_x, y = dchisq(line_x, df = nu_1 + nu_2), lwd = 2)
## -------------------------------------------------------------------------------------------
curve(dchisq(x, df = 5), xlim = c(0, 100), lwd = 2, xlab = "x", ylab = "density")
line_x <- seq(0, 100, length = 1000)
lines(x = line_x, y = dchisq(line_x, df = 10), lty = 2, lwd = 2)
lines(x = line_x, y = dchisq(line_x, df = 50), lty = 3, lwd = 2)
legend("topright", legend = c("ν = 5", "ν = 10", "ν = 50"), lty = 1:3)
## -------------------------------------------------------------------------------------------
# 太い実線:標準正規分布
curve(dnorm(x), xlim = c(-8, 8), lwd = 2)
# 細い実線:自由度γ = 3のt分布
curve(dt(x, df = 3), xlim = c(-8, 8), add = TRUE)
# 破線:自由度γ = 10のt分布
curve(dt(x, df = 10), xlim = c(-8, 8), add = TRUE, lty = "dashed")
legend("topright",
legend = c("Normal(0, 1)", "t(ν = 3)", "t(ν = 10)"),
lty = c(1, 1, 3), lwd = c(2, 1, 1)
)
## -------------------------------------------------------------------------------------------
nu <- 4 # χ2乗分布の自由度パラメータ
n <- 10000 # 生成するtの個数
set.seed(123)
t <- rnorm(n) / sqrt(rchisq(n, df = nu) / nu)
# χ2乗分布の自由度パラメータν = 4のときのt
hist(t, breaks = 30, prob = TRUE)
line_x <- seq(min(t), max(t), length = 200)
# 自由度ν = 4のt分布
lines(x = line_x, y = dt(line_x, df = nu), lwd = 2)
## -------------------------------------------------------------------------------------------
nu <- 4 # χ2乗分布の自由度パラメータ
n <- 10000 # 生成するtの個数
set.seed(123)
t <- rnorm(n) / sqrt(rchisq(n, df = nu) / nu)
# χ2乗分布の自由度パラメータν = 4のときのt
hist(t, breaks = 30, prob = TRUE, ylim = c(0, 0.4))
line_x <- seq(min(t), max(t), length = 200)
# 自由度ν = 4のt分布
lines(x = line_x, y = dt(line_x, df = nu), lwd = 2)
## -------------------------------------------------------------------------------------------
nu <- 4 # 自由度パラメータ
set.seed(123)
t <- rt(n = 100000, df = nu)
mean(t) # 平均
var_p(t) # 分散(第2章で定義した自作関数を使用)
## -------------------------------------------------------------------------------------------
nu <- 100000 # χ2乗分布の自由度パラメータ
n <- 10000 # 生成するtの個数
set.seed(123)
t <- rnorm(n) / sqrt(rchisq(n, df = nu) / nu)
# χ2乗分布の自由度パラメータν = 100000のときのt
hist(t, breaks = 30, prob = TRUE)
line_x <- seq(min(t), max(t), length = 200)
lines(x = line_x, y = dnorm(line_x), lwd = 2) # 標準正規分布
## -------------------------------------------------------------------------------------------
nu_1 <- 5
nu_2 <- 20
n <- 10000 # 生成するfの個数
set.seed(123)
f <- (rchisq(n, df = nu_1) / nu_1) / (rchisq(n, df = nu_2) / nu_2)
hist(f, breaks = 30, prob = TRUE)
line_x <- seq(min(f), max(f), length = n)
lines(x = line_x, y = df(line_x, df1 = nu_1, df2 = nu_2), lwd = 2) # 自由度(5, 20)のF分布の形状を曲線で描画
# 注意:df()はF分布の確率密度関数で、自由度(degree of freedom)の意味ではない
# df()の引数であるdf1やdf2は自由度パラメータ
## -------------------------------------------------------------------------------------------
nu_1 <- 5
nu_2 <- 20
n <- 10000 # 生成するfの個数
set.seed(123)
f <- (rchisq(n, df = nu_1) / nu_1) / (rchisq(n, df = nu_2) / nu_2)
hist(f, breaks = 30, prob = TRUE, ylim = c(0, 0.75))
line_x <- seq(min(f), max(f), length = n)
# 自由度(5, 20)のF分布の形状を曲線で描画
lines(x = line_x, y = df(line_x, df1 = nu_1, df2 = nu_2), lwd = 2)
## -------------------------------------------------------------------------------------------
nu <- 20 # χ2乗分布の自由度パラメータ
n <- 10000 # 生成するfの個数
set.seed(123)
t <- rnorm(n) / sqrt(rchisq(n, df = nu) / nu)
f <- t^2
##
hist(f, breaks = 30, prob = TRUE)
line_x <- seq(min(f), max(f), length = n)
lines(x = line_x, y = df(line_x, df1 = nu_1, df2 = nu_2), lwd = 2) # 自由度(1, 20)のF分布の形状を曲線で描画
## -------------------------------------------------------------------------------------------
nu <- 20 # χ2乗分布の自由度パラメータ
n <- 10000 # 生成するfの個数
set.seed(123)
t <- rnorm(n) / sqrt(rchisq(n, df = nu) / nu)
f <- t^2
hist(f, breaks = 30, prob = TRUE, ylim = c(0, 0.7))
line_x <- seq(min(f), max(f), length = n)
# 自由度(1, 20)のF分布の形状を曲線で描画
lines(x = line_x, y = df(line_x, df1 = nu_1, df2 = nu_2), lwd = 2)
## -------------------------------------------------------------------------------------------
set.seed(123) # 乱数のシードを指定
n <- 100 # 標本サイズ
# 数学の点数が従う正規分布の平均
math_mu <- 50
# 数学の点数が従う正規分布の標準偏差
math_sigma <- 10
# 正規分布に従う、数学テストの得点の実現値
math <- rnorm(n, math_mu, math_sigma)
# 身長が従う正規分布の平均
height_mu <- 160
# 身長が従う正規分布の標準偏差
height_sigma <- 15
# 正規分布に従う、身長の実現値
height <- rnorm(n, height_mu, height_sigma)
cor(math, height) # 相関係数の実現値
plot(math, height) # 散布図
## -------------------------------------------------------------------------------------------
## install.packages("mnormt") # 未インストールの場合は最初に一度実行する
library(mnormt)
x <- y <- seq(from = -5, to = 5, by = 0.1)
mu_vec <- c(0, 0)
rho <- 0.4
covmatrix <- matrix(c(1, rho, rho, 1), nrow = 2, ncol = 2)
density2d <- function(x, y) {
dmnorm(cbind(x, y), mu_vec, covmatrix)
}
z <- outer(x, y, density2d)
# par(mfrow = c(2, 1))
persp(x, y, z, theta = 0, phi = 25, expand = 0.6, ticktype = "detailed", main = "X軸側から見た正規分布")
persp(x, y, z, theta = 90, phi = 25, expand = 0.6, ticktype = "detailed", main = "Y軸側から見た正規分布")
## -------------------------------------------------------------------------------------------
# それぞれ、数学テストの得点と身長が従う正規分布の平均
mu_vec <- c(math_mu, height_mu)
## -------------------------------------------------------------------------------------------
rho <- 0.4 # 数学と身長が従う2変量正規分布の相関パラメータ
tau <- rho * math_sigma * height_sigma # 数学と身長の共分散
# 分散共分散行列 ------------
cov_matrix <- matrix(
c(
math_sigma^2, tau,
tau, height_sigma^2
),
nrow = 2
)
cov_matrix
## -------------------------------------------------------------------------------------------
cov2cor(cov_matrix)
## -------------------------------------------------------------------------------------------
library(MASS)
set.seed(123)
dat_2norm <- MASS::mvrnorm(
n = 2000,
mu = mu_vec,
Sigma = cov_matrix
)
# 各変数に名前を付ける。説明のために命名しているので、実用上は必須ではない
colnames(dat_2norm) <- c("math", "height")
# 冒頭5行を表示
head(dat_2norm, n = 5)
## -------------------------------------------------------------------------------------------
cor(dat_2norm)
plot(math ~ height, data = dat_2norm)
## -------------------------------------------------------------------------------------------
age_mu <- 15 # 年齢の平均
age_sigma <- 2 # 年齢の標準偏差
# それぞれ、数学テストの得点、身長、年齢が従う正規分布の平均
mu_vec <- c(math_mu, height_mu, age_mu)
# それぞれ、数学テストの得点、身長、年齢が従う正規分布の標準偏差
sigma_vec <- c(math_sigma, height_sigma, age_sigma)
## -------------------------------------------------------------------------------------------
rho_matrix <- matrix(c(1, 0.4, 0.5, 0.4, 1, 0.8, 0.5, 0.8, 1),
nrow = length(sigma_vec)
)
# 行名を付ける。説明のために命名しているので、実用上は必須ではない
rownames(rho_matrix) <- c("math", "height", "age")
# 列名を付ける。説明のために命名しているので、実用上は必須ではない
colnames(rho_matrix) <- c("math", "height", "age")
rho_matrix
## -------------------------------------------------------------------------------------------
cov_matrix <- function(sigma_vec, rho_mx) {
return(
# 線形代数による演算
diag(sigma_vec) %*% rho_mx %*% diag(sigma_vec)
)
}
## -------------------------------------------------------------------------------------------
cov_matrix(sigma_vec = sigma_vec, rho_mx = rho_matrix)
## -------------------------------------------------------------------------------------------
set.seed(123)
dat_3norm <- MASS::mvrnorm(
n = 2000,
mu = mu_vec,
Sigma = cov_matrix(sigma_vec = sigma_vec, rho_mx = rho_matrix)
)
colnames(dat_3norm) <- c("math", "height", "age")
head(dat_3norm, 5) # 冒頭5行を表示
## -------------------------------------------------------------------------------------------
cor(dat_3norm)
pairs(dat_3norm)
## -------------------------------------------------------------------------------------------
pcor3 <- function(x, y, covariate) {
# 偏相関係数の計算における分子
pcor_top <- cor(x, y) - (cor(x, covariate) * cor(y, covariate))
# 偏相関係数の計算における分母
pcor_bottom <- sqrt(1 - cor(x, covariate)^2) * sqrt(1 - (cor(y, covariate)^2))
return(pcor_top / pcor_bottom) # 偏相関係数
}
dat_3norm <- as.data.frame(dat_3norm)
pcor3(x = dat_3norm$math, y = dat_3norm$height, covariate = dat_3norm$age)
## -------------------------------------------------------------------------------------------
# 数学が目的変数、年齢が説明変数の回帰分析
residual_math <- lm(math ~ age, data = dat_3norm) |>
# 残差の取り出し
residuals()
# 身長が目的変数、年齢が説明変数の回帰分析
residual_height <- lm(height ~ age, data = dat_3norm) |>
# 残差の取り出し
residuals()
cor(residual_math, residual_height) # 残差同士の相関係数
## -------------------------------------------------------------------------------------------
# 年齢と身長の相関係数(0 ~ 0.9)
rho_age_height <- seq(from = 0, to = 0.9, by = 0.3)
set.seed(123)
for (i in 1:length(rho_age_height)) {
rho_matrix <- matrix(
c(
1, 0.4, 0.5,
0.4, 1, rho_age_height[i],
0.5, rho_age_height[i], 1
),
nrow = length(sigma_vec)
)
dat_3norm <- MASS::mvrnorm(
n = 2000,
mu = mu_vec,
Sigma = cov_matrix(sigma_vec, rho_matrix)
)
print(
paste(
"年齢(共変量)と身長のρ = ",
rho_age_height[i],
", 数学と身長の偏相関係数 = ",
round(pcor3(dat_3norm[, 1], dat_3norm[, 2], dat_3norm[, 3]), 4)
) # paste()は、複数の引数を文字列に変換したうえで結合する関数
)
}