-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdataset_mapper.py
685 lines (624 loc) · 30.5 KB
/
dataset_mapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
import argparse
import os
from easydict import EasyDict as edict
from models.PGPR.utils import get_tail_entity_name, LASTFM_RELATION_NAME
from myutils import *
#Generate the mapping from the KG Completation of KGAT completion to a PGPR readable dataset
class LastFmDatasetMapper(object):
def __init__(self, args):
self.args = args
self.generate_train_test_split()
self.generate_user_attributes_mappings()
self.generate_kg_entities()
self.generate_kg_relations()
def generate_train_test_split(self):
dataset_name = self.args.dataset
uid_review_tuples = {}
dataset_size = 0
print("Loading reviews...")
with open(DATASET_DIR[dataset_name] + "/ratings.dat", 'r', encoding='latin-1') as reviews_file:
reader = csv.reader(reviews_file, delimiter=',')
next(reader, None)
for row in reader:
uid = int(row[0])
if uid not in uid_review_tuples:
uid_review_tuples[uid] = []
uid_review_tuples[uid].append((row[0], row[3], row[4]))
dataset_size += 1
reviews_file.close()
train_size = 0.8
print("Performing split {}/{}...".format(train_size * 100, 100 - train_size * 100))
for uid, reviews in uid_review_tuples.items():
reviews.sort(key=lambda x: int(x[-1])) # sorting from recent to older
train = []
test = []
discarted_users = 0
th = 5
for uid, reviews in uid_review_tuples.items(): # python dict are sorted, 1...nuser
#if len(reviews) < th:
# discarted_users += 1
# continue
n_elements_test = int(len(reviews) * train_size)
train.append(reviews[:n_elements_test])
test.append(reviews[n_elements_test:])
print("Discarted", discarted_users, "users with <", th, "interactions")
print("Writing train...")
with open(DATASET_DIR[dataset_name] + "/train.txt", 'w+') as file:
for user_reviews in train:
for review in user_reviews:
s = ' '.join(review)
file.writelines(s)
file.write("\n")
file.close()
print("Writing test...")
with open(DATASET_DIR[dataset_name] + "/test.txt", 'w+') as file:
for user_reviews in test:
for review in user_reviews:
s = ' '.join(review)
file.writelines(s)
file.write("\n")
file.close()
print("Zipping train and test...")
zip_file(DATASET_DIR[dataset_name] + "/train.txt")
zip_file(DATASET_DIR[dataset_name] + "/test.txt")
print("Loading reviews.. DONE")
def generate_kg_relations(self):
dataset_name = args.dataset
mappings = get_all_entity_mappings(dataset_name)
if dataset_name == ML1M:
product = 'movie'
else:
product = 'song'
no_of_movies = len(mappings[product])+1
movie_id_entity = edict(
sang_by=([[] for _ in range(no_of_movies)], DATASET_DIR[dataset_name] + '/relations/sang_by_s_a.txt'),
featured_by = ([[] for _ in range(no_of_movies)],DATASET_DIR[dataset_name] + '/relations/featured_by_s_a.txt'),
belong_to = ([[] for _ in range(no_of_movies)], DATASET_DIR[dataset_name] + '/relations/belong_to_s_ca.txt'),
mixed_by = ([[] for _ in range(no_of_movies)], DATASET_DIR[dataset_name] + '/relations/mixed_by_s_e.txt'),
related_to = ([[] for _ in range(no_of_movies)], DATASET_DIR[dataset_name] + '/relations/related_to_s_rs.txt'),
alternative_version_of = ([[] for _ in range(no_of_movies)],DATASET_DIR[dataset_name] + '/relations/alternative_version_of_s_rs.txt'),
original_version_of = ([[] for _ in range(no_of_movies)],DATASET_DIR[dataset_name] + '/relations/orginal_version_of_s_rs.txt'),
produced_by_producer=([[] for _ in range(no_of_movies)], DATASET_DIR[dataset_name] + '/relations/produced_by_producer_s_pr.txt'),
)
relations_path = DATASET_DIR[dataset_name] + "/relations/"
if not os.path.isdir(relations_path):
os.makedirs(relations_path)
print("Inserting relations inside buckets...\n")
with open(KG_COMPLETATION_DATASET_DIR[dataset_name] + '/kg_final.txt', 'r') as file:
csv_reader = csv.reader(file, delimiter=' ')
invalid = 0
for row in csv_reader:
row[0] = int(row[0])
if row[0] not in mappings[product]:
invalid += 1
continue
head = mappings[product][row[0]][0] #id of the movie in the kg
relation = int(row[1])
tail = int(row[2])
if relation not in SELECTED_RELATIONS[dataset_name]: continue
tail_entity_name = get_tail_entity_name(dataset_name, relation)
relation_name = LASTFM_RELATION_NAME[relation]
if tail not in mappings[tail_entity_name]: continue
kg_id_tail = mappings[tail_entity_name][tail]
movie_id_entity[relation_name][0][head].append(kg_id_tail)
file.close()
#print(invalid)
for relation_name in movie_id_entity.keys():
relationship_filename = movie_id_entity[relation_name][1]
associated_entity_list = movie_id_entity[relation_name][0]
print("Populating " + relationship_filename + "...\n")
with open(relationship_filename, 'w+') as file:
for entitylist_for_movie in associated_entity_list:
s = ' '.join([str(entitity) for entitity in entitylist_for_movie])
file.writelines(s)
file.write("\n")
zip_file(relationship_filename)
#Generate mappings from uid to sensible attributes for gender, age and occupation
def generate_user_attributes_mappings(self):
dataset_name = self.args.dataset
uid_attributes = {}
#user_id, country, age, gender, playcount, registered_unixtime
with open(DATASET_DIR[dataset_name] + "/users.dat", 'r') as file:
csv_reader = csv.reader(file, delimiter=',')
next(csv_reader, None)
for row in csv_reader:
uid = row[0]
country = row[1]
age = row[2]
gender = row[3]
uid_attributes[uid] = [country, age, gender]
file.close()
if not os.path.exists(DATASET_DIR[dataset_name] + "/mappings/"):
os.makedirs(DATASET_DIR[dataset_name] + "/mappings/")
# Write user_occupation mapping
with open(DATASET_DIR[dataset_name] + "/mappings/uid2country.txt", 'w+') as file:
for uid, attributes in uid_attributes.items():
country = attributes[0]
file.write(uid + "\t" + country + "\n")
file.close()
# Write user_age mapping
with open(DATASET_DIR[dataset_name] + "/mappings/uid2age_map.txt", 'w+') as file:
for uid, attributes in uid_attributes.items():
age = int(attributes[1])
if age < 18:
age_range = 1
elif age >= 18 and age <= 24:
age_range = 18
elif age >= 25 and age <= 34:
age_range = 25
elif age >= 35 and age <= 44:
age_range = 35
elif age >= 45 and age <= 49:
age_range = 45
elif age >= 50 and age <= 55:
age_range = 50
else:
age_range = 56
#{1: "Under 18", 18: "18-24", 25: "25-34", 35: "35-44", 45: "45-49", 50: "50-55", 56: "56+"}
file.write(uid + "\t" + str(age_range) + "\n")
file.close()
#Write user_gender mapping
with open(DATASET_DIR[dataset_name] + "/mappings/uid2gender.txt", 'w+') as file:
for uid, attributes in uid_attributes.items():
gender = attributes[2]
file.write(uid + "\t" + gender + "\n")
file.close()
def get_valid_users(self, args):
dataset_name = self.args.dataset
valid_users = set()
users_file = open(DATASET_DIR[dataset_name] + "/users.dat", "r")
reader = csv.reader(users_file)
next(reader, None)
for row in reader:
uid = int(row[0])
valid_users.add(uid)
return valid_users
def generate_kg_entities(self):
dataset_name = self.args.dataset
#Creates a dict of sets to store all the extracted entitities for every differnt type
kg_entities = edict(
user=(set(), 'user.txt'),
song=(set(), 'song.txt'),
artist=(set(), 'artist.txt'),
engineer=(set(), 'engineer.txt'),
producer=(set(), 'producer.txt'),
category=(set(), 'category.txt'),
related_song=(set(), 'related_song.txt'),
)
entity_path = DATASET_DIR[dataset_name] + "/entities/"
if not os.path.isdir(entity_path):
os.makedirs(entity_path)
lastid2name = {}
with open(DATASET_DIR[dataset_name] + "/tracks.txt") as file:
reader = csv.reader(file, delimiter=",")
next(reader, None)
for row in reader:
track_id = int(row[0])
lastid2name[track_id] = row[1]
file.close()
file = open(KG_COMPLETATION_DATASET_DIR[dataset_name] + "/item_list.txt", "r")
csv_reader = csv.reader(file, delimiter=' ')
dbid2lastid = {}
lastid2dbid = {}
lastid2freebase = {}
next(csv_reader, None)
for row in csv_reader:
last_id = int(row[0])
if last_id not in lastid2name: continue
dbid2lastid[int(row[1])] = int(row[0])
lastid2dbid[int(row[0])] = int(row[1])
lastid2freebase[int(row[0])] = row[2]
file.close()
kgid2freebase = {}
file = open(KG_COMPLETATION_DATASET_DIR[dataset_name] + "/entity_list.txt", "r")
csv_reader = csv.reader(file, delimiter=' ')
next(csv_reader, None)
for row in csv_reader:
kgid2freebase[int(row[1])] = row[0]
file.close()
with open(KG_COMPLETATION_DATASET_DIR[dataset_name] + "/kg_final.txt", 'r') as file:
csv_reader = csv.reader(file, delimiter=' ')
invalid = 0
count = 0
for row in csv_reader:
head = int(row[0])
relation = int(row[1])
tail = int(row[2])
if head not in dbid2lastid:
invalid += 1
continue
movie_id = head #OCCHIO
tail_name = get_tail_entity_name(dataset_name, relation) #Retriving what is the tail of that relation
kg_entities['song'][0].add(movie_id)
kg_entities[tail_name][0].add(tail)
file.close()
#print(invalid, count)
review_uid_kg_uid = {}
valid_users = self.get_valid_users(args)
# Write user entity
with open(KG_COMPLETATION_DATASET_DIR[dataset_name] + "/user_list.txt", 'r') as file:
csv_reader = csv.reader(file, delimiter=' ')
next(csv_reader, None)
with open(entity_path + "/user.txt", 'w+') as file:
for row in csv_reader:
review_uid = int(row[0])
kg_uid = int(row[1])+1
if review_uid in kg_entities.user[0] or review_uid not in valid_users: continue
kg_entities.user[0].add(review_uid)
review_uid_kg_uid[review_uid] = kg_uid
file.writelines(str(kg_uid))
file.write("\n")
file.close()
zip_file(entity_path + "user.txt")
with open(DATASET_DIR[dataset_name] + "/mappings/user_mappings.txt", 'w+') as file:
header = ["kgid", "lastfmid"]
file.write(' '.join(header) + "\n")
for review_id, kg_id in review_uid_kg_uid.items():
file.write('\t'.join([str(kg_id), str(review_id), "\n"]))
file.close()
#Populate movie entity file (Done by itself due to is different structure)
new_id2old_id = {}
with open(entity_path + "/song.txt", 'w+') as file:
for idx, movie in enumerate(kg_entities['song'][0]):
new_id2old_id[idx] = int(movie)
file.write(str(idx) + "\n")
file.close()
zip_file(entity_path + "song.txt")
# newId (0...n), oldId(movilandID), entityId(jointkgentityid), trackname, freebase id
with open(DATASET_DIR[dataset_name] + "/mappings/product_mappings.txt", 'w+') as file:
header = ["kgid", "lastfmid", "kgcompletionid", "trackname", "freebaseid"]
file.write(' '.join(header) + "\n")
for new_id, db_id in new_id2old_id.items():
last_id = dbid2lastid[db_id]
track_name = lastid2name[last_id]
freebase_id = lastid2freebase[last_id]
file.write('\t'.join([str(new_id), str(last_id), str(db_id), track_name, freebase_id, "\n"]))
file.close()
#Populating other entities
for entity_name in get_entities_without_user(dataset_name):
if entity_name == 'song': continue
new_id2old_id = {}
filename = entity_path + entity_name + '.txt'
#Populate entities
with open(filename, 'w+') as file:
for idx, entity in enumerate(kg_entities[entity_name][0]):
new_id2old_id[idx] = int(entity)
file.write(str(idx) + "\n")
file.close()
# newId (0...n), entityId(jointkgentityid), entityNameDBPEDIA
with open(DATASET_DIR[dataset_name] + "/mappings/" + entity_name + 'id2dbid.txt', 'w+') as file:
header = ["kg_id", "kg_completion_id", "freebase_id"]
file.write(' '.join(header) + "\n")
for new_id, old_id in new_id2old_id.items():
entity_dblink = kgid2freebase[old_id]
file.write(str(new_id) + '\t' + str(old_id) + '\t' + entity_dblink + "\n")
file.close()
# Zip entities
zip_file(filename)
#Generate the mapping from the KG Completation of Joint-KG to a PGPR readable dataset
class ML1MDatasetMapper(object):
def __init__(self, args):
self.args = args
self.generate_dbpid_mlpid_mapping()
self.generate_kg_entities()
self.generate_kg_relations()
self.generate_user_attributes_mappings()
self.generate_train_test_split()
def generate_dbpid_mlpid_mapping(self):
dataset_name = self.args.dataset
file = open(DATASET_DIR[dataset_name] + "/joint-kg/i2kg_map.tsv", "r")
dburl_to_mlid = {}
reader = csv.reader(file, delimiter="\t")
for row in reader:
mlid = int(row[0])
name = row[1]
dburl = row[2]
dburl_to_mlid[dburl] = [mlid, name]
file.close()
file = open(DATASET_DIR[dataset_name] + "/joint-kg/kg/e_map.dat", "r", encoding='latin-1')
fileo = open(DATASET_DIR[dataset_name] + "/mappings/product_mappings.txt", "w+")
writer = csv.writer(fileo, delimiter="\t")
header = ["mlid", "dbid", "name", "dburl"]
writer.writerow(header)
reader = csv.reader(file, delimiter="\t")
for row in reader:
dbid = int(row[0])
dburl = row[1]
if dburl not in dburl_to_mlid: continue
mlid = dburl_to_mlid[dburl][0]
name = dburl_to_mlid[dburl][1]
writer.writerow([mlid, dbid, name, dburl])
file.close()
fileo.close()
def generate_train_test_split(self):
dataset_name = self.args.dataset
uid_review_tuples = {}
dataset_size = 0
valid_movies = get_valid_movies(dataset_name)
print("Loading reviews...")
with open(DATASET_DIR[dataset_name] + "/ratings.dat", 'r', encoding='latin-1') as reviews_file:
reader = csv.reader(reviews_file, delimiter='\n')
for row in reader:
row = ''.join(row).strip().split("::")
if int(row[1]) not in valid_movies: continue
if row[0] not in uid_review_tuples:
uid_review_tuples[row[0]] = []
uid_review_tuples[row[0]].append((row[0], row[1], row[2], row[3]))
dataset_size += 1
reviews_file.close()
train_size = 0.8
print("Performing split {}/{}...".format(train_size*100, 100-train_size*100))
for uid, reviews in uid_review_tuples.items():
reviews.sort(key=lambda x: int(x[3])) #sorting from recent to older
train = []
test = []
discarted_users = 0
th = 5
for uid, reviews in uid_review_tuples.items(): # python dict are sorted, 1...nuser
if len(reviews) < th:
discarted_users += 1
continue
n_elements_test = int(len(reviews) * train_size)
train.append(reviews[:n_elements_test])
test.append(reviews[n_elements_test:])
print("Discarted", discarted_users, "users with <", th, "interactions")
print("Writing train...")
with open(DATASET_DIR[dataset_name] + "/train.txt", 'w+') as file:
for user_reviews in train:
for review in user_reviews:
s = ' '.join(review)
file.writelines(s)
file.write("\n")
file.close()
print("Writing test...")
with open(DATASET_DIR[dataset_name] + "/test.txt", 'w+') as file:
for user_reviews in test:
for review in user_reviews:
s = ' '.join(review)
file.writelines(s)
file.write("\n")
file.close()
print("Zipping train and test...")
zip_file(DATASET_DIR[dataset_name] + "/train.txt")
zip_file(DATASET_DIR[dataset_name] + "/test.txt")
print("Loading reviews.. DONE")
#Generate mappings from uid to sensible attributes for gender, age and occupation
def generate_user_attributes_mappings(self):
dataset_name = self.args.dataset
users_id = []
genders = []
ages = []
occupations = []
with open(DATASET_DIR[dataset_name] + "/users.dat", 'r') as file:
csv_reader = csv.reader(file, delimiter='\n')
for row in csv_reader:
attributes = row[0].strip().split('::')
users_id.append(attributes[0])
genders.append(attributes[1])
ages.append(attributes[2])
occupations.append(attributes[3])
file.close()
#Write user_gender mapping
with open(DATASET_DIR[dataset_name] + "/mappings/uid2gender.txt", 'w+') as file:
for user, gender in zip(users_id, genders):
file.write(user + "\t" + gender + "\n")
file.close()
# Write user_occupation mapping
with open(DATASET_DIR[dataset_name] + "/mappings/uid2occupation.txt", 'w+') as file:
for user, occupation in zip(users_id, occupations):
file.write(user + "\t" + occupation + "\n")
file.close()
# Write user_age mapping
with open(DATASET_DIR[dataset_name] + "/mappings/uid2age_map.txt", 'w+') as file:
for user, age in zip(users_id, ages):
file.write(user + "\t" + age + "\n")
file.close()
def generate_kg_entities(self):
dataset_name = self.args.dataset
#Creates a dict of sets to store all the extracted entitities for every differnt type
kg_entities = edict(
user=(set(), 'user.txt'),
movie=(set(), 'movie.txt'),
actor=(set(), 'actor.txt'),
director=(set(), 'director.txt'),
producer=(set(), 'producer.txt'),
production_company=(set(), 'production_company.txt'),
category=(set(), 'category.txt'),
editor=(set(), 'editor.txt'),
writter=(set(), 'writter.txt'),
cinematographer=(set(), 'cinematographer.txt'),
composer=(set(), 'composer.txt'),
)
entity_path = DATASET_DIR[dataset_name] + "/entities/"
if not os.path.isdir(entity_path):
os.makedirs(entity_path)
file = open(DATASET_DIR[dataset_name] + "/mappings/product_mappings.txt", "r")
reader = csv.reader(file, delimiter='\n')
db_pid2ml_pid = {}
ml_pid2db_pid = {}
ml_pid2metada = {}
next(reader, None)
for i, row in enumerate(reader):
row = row[0].strip().split("\t")
db_pid2ml_pid[int(row[1])] = int(row[0])
ml_pid2db_pid[int(row[0])] = int(row[1])
ml_pid2metada[int(row[0])] = [row[2], row[3]]
file.close()
kg_entities['movie'][0] = set(ml_pid2db_pid.keys())
with open(KG_COMPLETATION_DATASET_DIR[dataset_name] + "/dataset.dat", 'r') as file:
csv_reader = csv.reader(file, delimiter='\t')
for row in csv_reader:
head = int(row[0])
tail = row[1]
relation = int(row[2])
if head not in db_pid2ml_pid: continue
#movie_id = db_pid2ml_pid[head]
tail_name = get_tail_entity_name(dataset_name, relation) #Retriving what is the tail of that relation
#kg_entities['movie'][0].add(movie_id)
kg_entities[tail_name][0].add(tail)
file.close()
# Write user entity
with open(DATASET_DIR[dataset_name] + "/users.dat", 'r') as file:
csv_reader = csv.reader(file, delimiter='\n')
for row in csv_reader:
row = row[0].strip().split('::')
uid = int(row[0])
kg_entities.user[0].add(uid)
new_id2old_id = {}
with open(entity_path + "/user.txt", 'w+') as file:
for idx, u in enumerate(kg_entities.user[0]):
new_id2old_id[idx] = int(u)
file.writelines(str(idx))
file.write("\n")
file.close()
zip_file(entity_path + "/user.txt")
with open(DATASET_DIR[dataset_name] + "/mappings/user_mappings.txt", 'w+') as file:
header = ["kg_id", "ml1m_id"]
file.write('\t'.join(header) + "\n")
for new_id, old_id in new_id2old_id.items():
file.write(str(new_id) + '\t' + str(old_id) + "\n")
file.close()
#Populate movie entity file (Done by itself due to is different structure)
new_id2old_id = {}
with open(entity_path + "/movie.txt", 'w+') as file:
for idx, movie in enumerate(kg_entities['movie'][0]):
new_id2old_id[idx] = int(movie)
file.write(str(idx) + "\n")
file.close()
# newId (0...n), oldId(movilandID), entityId(jointkgentityid), entityNameDBPEDIA
with open(DATASET_DIR[dataset_name] + "/mappings/product_mappings.txt", 'w+') as file:
header = ["kg_id", "ml1m_id", "db_id", "name", "dbpedia_url"]
file.write('\t'.join(header) + "\n")
for new_id, old_id in new_id2old_id.items():
entity_id = ml_pid2db_pid[old_id]
file.write("\t".join([str(new_id), str(old_id), str(entity_id), ml_pid2metada[old_id][0], ml_pid2metada[old_id][1] + "\n"]))
file.close()
zip_file(entity_path + "/movie.txt")
#Retrive the dblink associated to the entity id in the kg completion
entity_id2dblink = {}
entity_file = open(DATASET_DIR[dataset_name] + "/joint-kg/kg/e_map.dat", "r", encoding='latin-1')
reader = csv.reader(entity_file, delimiter="\t")
for row in reader:
eid = int(row[0])
dblink = row[1]
entity_id2dblink[eid] = dblink
#Populating other entities
for entity_name in get_entities_without_user(dataset_name):
if entity_name == 'movie': continue
new_id2old_id = {}
filename = entity_path + entity_name + '.txt'
#Populate entities
with open(filename, 'w+') as file:
for idx, entity in enumerate(kg_entities[entity_name][0]):
new_id2old_id[idx] = int(entity)
file.write(str(idx) + "\n")
file.close()
# newId (0...n), entityId(jointkgentityid), entityNameDBPEDIA
with open(DATASET_DIR[dataset_name] + "/mappings/" + entity_name + 'id2dbid.txt', 'w+') as file:
header = ["kgid", "dbid", "dblink"]
file.write("\t".join(header) + "\n")
for new_id, old_id in new_id2old_id.items():
entity_dblink = entity_id2dblink[old_id]
file.write(str(new_id) + '\t' + str(old_id) + '\t' + entity_dblink + "\n")
file.close()
# Zip entities
zip_file(filename)
def generate_kg_relations(self):
dataset_name = args.dataset
mappings = get_all_entity_mappings(dataset_name)
no_of_movies = len(mappings['movie'])+1
movie_id_entity = edict(
production_company=([[] for _ in range(no_of_movies)], DATASET_DIR[dataset_name] + '/relations/produced_by_company_m_pc.txt'),
composer=([[] for _ in range(no_of_movies)], DATASET_DIR[dataset_name] + '/relations/composed_by_m_c.txt'),
category=([[] for _ in range(no_of_movies)], DATASET_DIR[dataset_name] + '/relations/belong_to_m_ca.txt'),
director=([[] for _ in range(no_of_movies)], DATASET_DIR[dataset_name] + '/relations/directed_by_m_d.txt'),
actor=([[] for _ in range(no_of_movies)], DATASET_DIR[dataset_name] + '/relations/starring_m_a.txt'),
cinematographer=([[] for _ in range(no_of_movies)], DATASET_DIR[dataset_name] + '/relations/cinematography_m_ci.txt'),
editor=([[] for _ in range(no_of_movies)], DATASET_DIR[dataset_name] + '/relations/edited_by_m_ed.txt'),
producer=([[] for _ in range(no_of_movies)], DATASET_DIR[dataset_name] + '/relations/produced_by_producer_m_pr.txt'),
writter=([[] for _ in range(no_of_movies)], DATASET_DIR[dataset_name] + '/relations/wrote_by_m_w.txt'),
)
relations_path = DATASET_DIR[dataset_name] + "/relations/"
if not os.path.isdir(relations_path):
os.makedirs(relations_path)
invalid = 0
print("Inserting relations inside buckets...\n")
with open(KG_COMPLETATION_DATASET_DIR[dataset_name] + '/dataset.dat', 'r') as file:
csv_reader = csv.reader(file, delimiter='\n')
for row in csv_reader:
row = row[0].strip().split("\t")
db_pid = int(row[0])
if db_pid not in mappings['movie']:
invalid += 1
continue
head = mappings['movie'][db_pid][0] #id of the movie in the kg
tail = int(row[1])
relation = int(row[2])
if relation not in SELECTED_RELATIONS[dataset_name]:
invalid += 1
continue
tail_entity_name = get_tail_entity_name(dataset_name, relation)
if tail not in mappings[tail_entity_name]:
invalid += 1
continue
kg_id_tail = mappings[tail_entity_name][tail]
movie_id_entity[tail_entity_name][0][head].append(kg_id_tail)
file.close()
print("Invalid relationships:", invalid)
for entitity_name in get_entities_without_user(dataset_name):
if entitity_name == 'movie': continue
relationship_filename = movie_id_entity[entitity_name][1]
associated_entity_list = movie_id_entity[entitity_name][0]
print("Populating " + relationship_filename + "...\n")
with open(relationship_filename, 'w+') as file:
for entitylist_for_movie in associated_entity_list:
s = ' '.join([str(entitity) for entitity in entitylist_for_movie])
file.writelines(s)
file.write("\n")
zip_file(relationship_filename)
def unify_dataset(args):
dataset_name = args.dataset
selected_relationship = SELECTED_RELATIONS[dataset_name]
print("Unifying dataset from joint-kg Knowledge graph completation for {}...".format(dataset_name))
with open(KG_COMPLETATION_DATASET_DIR[dataset_name] + "/dataset.dat", 'w+', newline='\n') as dataset_file:
print("Loading joint-kg train...")
with open(KG_COMPLETATION_DATASET_DIR[dataset_name] + "/kg/train.dat") as joint_kg_train:
csv_reader = csv.reader(joint_kg_train, delimiter='\t')
for row in csv_reader:
relation = int(row[2])
if relation not in selected_relationship: continue
dataset_file.writelines('\t'.join(row))
dataset_file.write("\n")
joint_kg_train.close()
print("Loading joint-kg valid...")
with open(KG_COMPLETATION_DATASET_DIR[dataset_name] + "/kg/valid.dat") as joint_kg_valid:
csv_reader = csv.reader(joint_kg_valid, delimiter='\t')
for row in csv_reader:
relation = int(row[2])
if relation not in selected_relationship: continue
dataset_file.writelines('\t'.join(row))
dataset_file.write("\n")
joint_kg_valid.close()
print("Loading joint-kg test...")
with open(KG_COMPLETATION_DATASET_DIR[dataset_name] + "/kg/test.dat") as joint_kg_test:
csv_reader = csv.reader(joint_kg_test, delimiter='\t')
for row in csv_reader:
relation = int(row[2])
if relation not in selected_relationship: continue
dataset_file.writelines('\t'.join(row))
dataset_file.write("\n")
joint_kg_test.close()
print("Unifying dataset from joint-kg Knowledge graph completation... DONE")
dataset_file.close()
if __name__ == '__main__':
boolean = lambda x: (str(x).lower() == 'true')
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default=ML1M, help='One of {ML1M, LASTFM}')
args = parser.parse_args()
#unify_dataset(args)
if args.dataset == ML1M:
ML1MDatasetMapper(args)
elif args.dataset == LASTFM:
LastFmDatasetMapper(args)
else:
print("Invalid dataset string, chose one between [ml1m, lastfm]")