-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_mem.py
executable file
·85 lines (66 loc) · 3 KB
/
evaluate_mem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# Copyright (C) 2023 Bruno Da Rocha Carvalho, Gabriel Catel Torres Arzur
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
from gpu_alloc import TraceMalloc
from dataset import PipelineDataset
from pipelinecache.layered_model import PipelinedModel
import os
import time
import torch
import argparse
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '29600'
parser = argparse.ArgumentParser()
parser.add_argument('--input_shape', type=str, help='Input shape as a list')
parser.add_argument('--output_shape', type=str, help='Output shape as a list')
parser.add_argument('--number_gpu', type=int, help='Number of GPU')
parser.add_argument('--number_chunks', type=int, help='Number of chunks')
parser.add_argument('--dtype', type=str, help='Type of output\'s tensor (long, float32...)')
args = parser.parse_args()
input_shape = args.input_shape.replace("[", "").replace("]", "")
input_shape = input_shape.split(",")
input_shape = [int(x.strip()) for x in input_shape]
output_shape = args.output_shape.replace("[", "").replace("]", "")
output_shape = output_shape.split(",")
output_shape = [int(x.strip()) for x in output_shape]
number_gpus = args.number_gpu
number_chunks = args.number_chunks
trace_gpu_alloc = TraceMalloc(number_gpus)
criterion = torch.nn.CrossEntropyLoss()
torch.cuda.init()
torch.distributed.rpc.init_rpc('worker', rank=0, world_size=1)
with trace_gpu_alloc:
model = PipelinedModel()
dataset = PipelineDataset(1024, input_shape[1:], [1] if len(output_shape) == 1 else output_shape[1:], args.dtype)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=input_shape[0], shuffle=True)
model = model.get_modules()
model = torch.distributed.pipeline.sync.Pipe(model, number_chunks)
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
for i in range(3):
start_time = time.time()
for inputs, labels in dataloader:
optimizer.zero_grad()
inputs = inputs.to(0)
labels = labels.to(number_gpus- 1)
try:
outputs = model(inputs).local_value()
except Exception as e:
print(e)
exit()
labels_tmp = labels.squeeze()
loss = criterion(outputs, labels.squeeze())
loss.backward()
end_time = time.time()
execution_time = end_time - start_time
print(trace_gpu_alloc.peaked)