@@ -8,7 +8,7 @@ def test_deviance():
8
8
"""Test deviance."""
9
9
n_samples , n_features = 1000 , 100
10
10
11
- beta0 = np .random .normal ( 0.0 , 1.0 , 1 )
11
+ beta0 = np .random .rand ( )
12
12
beta = np .random .normal (0.0 , 1.0 , n_features )
13
13
14
14
# sample train and test data
@@ -26,7 +26,7 @@ def test_pseudoR2():
26
26
"""Test pseudo r2."""
27
27
n_samples , n_features = 1000 , 100
28
28
29
- beta0 = np .random .normal ( 0.0 , 1.0 , 1 )
29
+ beta0 = np .random .rand ( )
30
30
beta = np .random .normal (0.0 , 1.0 , n_features )
31
31
32
32
# sample train and test data
@@ -44,13 +44,15 @@ def test_accuracy():
44
44
"""Testing accuracy."""
45
45
n_samples , n_features , n_classes = 1000 , 100 , 2
46
46
47
- beta0 = np .random .normal ( 0.0 , 1.0 , 1 )
48
- beta = np .random .normal (0.0 , 1.0 , (n_features , n_classes ))
47
+ beta0 = np .random .rand ( )
48
+ betas = np .random .normal (0.0 , 1.0 , (n_features , n_classes ))
49
49
50
50
# sample train and test data
51
51
glm_sim = GLM (distr = 'binomial' , score_metric = 'accuracy' )
52
52
X = np .random .randn (n_samples , n_features )
53
- y = simulate_glm (glm_sim .distr , beta0 , beta , X )
53
+ y = np .zeros ((n_samples , 2 ))
54
+ for idx , beta in enumerate (betas .T ):
55
+ y [:, idx ] = simulate_glm (glm_sim .distr , beta0 , beta , X )
54
56
y = np .argmax (y , axis = 1 )
55
57
glm_sim .fit (X , y )
56
58
score = glm_sim .score (X , y )
0 commit comments