All URIs are relative to http://localhost
Method | HTTP request | Description |
---|---|---|
generate_logical_model | POST /api/v1/actions/dataSources/{dataSourceId}/generateLogicalModel | Generate logical data model (LDM) from physical data model (PDM) |
DeclarativeModel generate_logical_model(data_source_id, generate_ldm_request)
Generate logical data model (LDM) from physical data model (PDM)
Generate logical data model (LDM) from physical data model (PDM) stored in data source.
import time
import gooddata_api_client
from gooddata_api_client.api import generate_logical_data_model_api
from gooddata_api_client.model.declarative_model import DeclarativeModel
from gooddata_api_client.model.generate_ldm_request import GenerateLdmRequest
from pprint import pprint
# Defining the host is optional and defaults to http://localhost
# See configuration.py for a list of all supported configuration parameters.
configuration = gooddata_api_client.Configuration(
host = "http://localhost"
)
# Enter a context with an instance of the API client
with gooddata_api_client.ApiClient() as api_client:
# Create an instance of the API class
api_instance = generate_logical_data_model_api.GenerateLogicalDataModelApi(api_client)
data_source_id = "dataSourceId_example" # str |
generate_ldm_request = GenerateLdmRequest(
date_granularities="all",
denorm_prefix="dr",
fact_prefix="f",
generate_long_ids=False,
grain_multivalue_reference_prefix="grmr",
grain_prefix="gr",
grain_reference_prefix="grr",
multivalue_reference_prefix="mr",
pdm=PdmLdmRequest(
sqls=[
PdmSql(
columns=[
SqlColumn(
data_type="INT",
name="customer_id",
),
],
statement="select * from abc",
title="My special dataset",
),
],
table_overrides=[
TableOverride(
columns=[
ColumnOverride(
label_target_column="users",
label_type="HYPERLINK",
ldm_type_override="FACT",
name="column_name",
),
],
path=["schema","table_name"],
),
],
tables=[
DeclarativeTable(
columns=[
DeclarativeColumn(
data_type="INT",
is_primary_key=True,
name="customer_id",
referenced_table_column="customer_id",
referenced_table_id="customers",
),
],
id="customers",
name_prefix="out_gooddata",
path=["table_schema","table_name"],
type="TABLE",
),
],
),
primary_label_prefix="pl",
reference_prefix="r",
secondary_label_prefix="ls",
separator="__",
table_prefix="out_table",
view_prefix="out_view",
wdf_prefix="wdf",
workspace_id="workspace_id_example",
) # GenerateLdmRequest |
# example passing only required values which don't have defaults set
try:
# Generate logical data model (LDM) from physical data model (PDM)
api_response = api_instance.generate_logical_model(data_source_id, generate_ldm_request)
pprint(api_response)
except gooddata_api_client.ApiException as e:
print("Exception when calling GenerateLogicalDataModelApi->generate_logical_model: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
data_source_id | str | ||
generate_ldm_request | GenerateLdmRequest |
No authorization required
- Content-Type: application/json
- Accept: application/json
Status code | Description | Response headers |
---|---|---|
200 | LDM generated successfully. | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]