All URIs are relative to http://localhost
Method | HTTP request | Description |
---|---|---|
ai_chat | POST /api/v1/actions/workspaces/{workspaceId}/ai/chat | (BETA) Chat with AI |
ai_chat_history | POST /api/v1/actions/workspaces/{workspaceId}/ai/chatHistory | (BETA) Get Chat History |
ai_chat_stream | POST /api/v1/actions/workspaces/{workspaceId}/ai/chatStream | (BETA) Chat with AI |
ai_search | POST /api/v1/actions/workspaces/{workspaceId}/ai/search | (BETA) Semantic Search in Metadata |
anomaly_detection | POST /api/v1/actions/workspaces/{workspaceId}/execution/functions/anomalyDetection/{resultId} | (EXPERIMENTAL) Smart functions - Anomaly Detection |
anomaly_detection_result | GET /api/v1/actions/workspaces/{workspaceId}/execution/functions/anomalyDetection/result/{resultId} | (EXPERIMENTAL) Smart functions - Anomaly Detection Result |
clustering | POST /api/v1/actions/workspaces/{workspaceId}/execution/functions/clustering/{resultId} | (EXPERIMENTAL) Smart functions - Clustering |
clustering_result | GET /api/v1/actions/workspaces/{workspaceId}/execution/functions/clustering/result/{resultId} | (EXPERIMENTAL) Smart functions - Clustering Result |
forecast | POST /api/v1/actions/workspaces/{workspaceId}/execution/functions/forecast/{resultId} | (BETA) Smart functions - Forecast |
forecast_result | GET /api/v1/actions/workspaces/{workspaceId}/execution/functions/forecast/result/{resultId} | (BETA) Smart functions - Forecast Result |
ChatResult ai_chat(workspace_id, chat_request)
(BETA) Chat with AI
(BETA) Combines multiple use cases such as search, create visualizations, ...
import time
import gooddata_api_client
from gooddata_api_client.api import smart_functions_api
from gooddata_api_client.model.chat_result import ChatResult
from gooddata_api_client.model.chat_request import ChatRequest
from pprint import pprint
# Defining the host is optional and defaults to http://localhost
# See configuration.py for a list of all supported configuration parameters.
configuration = gooddata_api_client.Configuration(
host = "http://localhost"
)
# Enter a context with an instance of the API client
with gooddata_api_client.ApiClient() as api_client:
# Create an instance of the API class
api_instance = smart_functions_api.SmartFunctionsApi(api_client)
workspace_id = "/6bUUGjjNSwg0_bs" # str | Workspace identifier
chat_request = ChatRequest(
limit_create=3,
limit_create_context=10,
limit_search=5,
question="question_example",
relevant_score_threshold=0.45,
search_score_threshold=0.9,
thread_id_suffix="thread_id_suffix_example",
title_to_descriptor_ratio=0.7,
user_context=UserContext(
active_object=ActiveObjectIdentification(
id="id_example",
type="type_example",
workspace_id="workspace_id_example",
),
),
) # ChatRequest |
# example passing only required values which don't have defaults set
try:
# (BETA) Chat with AI
api_response = api_instance.ai_chat(workspace_id, chat_request)
pprint(api_response)
except gooddata_api_client.ApiException as e:
print("Exception when calling SmartFunctionsApi->ai_chat: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
workspace_id | str | Workspace identifier | |
chat_request | ChatRequest |
No authorization required
- Content-Type: application/json
- Accept: application/json
Status code | Description | Response headers |
---|---|---|
200 | OK | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
ChatHistoryResult ai_chat_history(workspace_id, chat_history_request)
(BETA) Get Chat History
(BETA) Post thread ID (and optionally interaction ID) to get full/partial chat history.
import time
import gooddata_api_client
from gooddata_api_client.api import smart_functions_api
from gooddata_api_client.model.chat_history_result import ChatHistoryResult
from gooddata_api_client.model.chat_history_request import ChatHistoryRequest
from pprint import pprint
# Defining the host is optional and defaults to http://localhost
# See configuration.py for a list of all supported configuration parameters.
configuration = gooddata_api_client.Configuration(
host = "http://localhost"
)
# Enter a context with an instance of the API client
with gooddata_api_client.ApiClient() as api_client:
# Create an instance of the API class
api_instance = smart_functions_api.SmartFunctionsApi(api_client)
workspace_id = "/6bUUGjjNSwg0_bs" # str | Workspace identifier
chat_history_request = ChatHistoryRequest(
chat_history_interaction_id="chat_history_interaction_id_example",
reset=True,
thread_id_suffix="thread_id_suffix_example",
user_feedback="POSITIVE",
) # ChatHistoryRequest |
# example passing only required values which don't have defaults set
try:
# (BETA) Get Chat History
api_response = api_instance.ai_chat_history(workspace_id, chat_history_request)
pprint(api_response)
except gooddata_api_client.ApiException as e:
print("Exception when calling SmartFunctionsApi->ai_chat_history: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
workspace_id | str | Workspace identifier | |
chat_history_request | ChatHistoryRequest |
No authorization required
- Content-Type: application/json
- Accept: application/json
Status code | Description | Response headers |
---|---|---|
200 | OK | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
[dict] ai_chat_stream(workspace_id, chat_request)
(BETA) Chat with AI
(BETA) Combines multiple use cases such as search, create visualizations, ...
import time
import gooddata_api_client
from gooddata_api_client.api import smart_functions_api
from gooddata_api_client.model.chat_request import ChatRequest
from pprint import pprint
# Defining the host is optional and defaults to http://localhost
# See configuration.py for a list of all supported configuration parameters.
configuration = gooddata_api_client.Configuration(
host = "http://localhost"
)
# Enter a context with an instance of the API client
with gooddata_api_client.ApiClient() as api_client:
# Create an instance of the API class
api_instance = smart_functions_api.SmartFunctionsApi(api_client)
workspace_id = "/6bUUGjjNSwg0_bs" # str | Workspace identifier
chat_request = ChatRequest(
limit_create=3,
limit_create_context=10,
limit_search=5,
question="question_example",
relevant_score_threshold=0.45,
search_score_threshold=0.9,
thread_id_suffix="thread_id_suffix_example",
title_to_descriptor_ratio=0.7,
user_context=UserContext(
active_object=ActiveObjectIdentification(
id="id_example",
type="type_example",
workspace_id="workspace_id_example",
),
),
) # ChatRequest |
# example passing only required values which don't have defaults set
try:
# (BETA) Chat with AI
api_response = api_instance.ai_chat_stream(workspace_id, chat_request)
pprint(api_response)
except gooddata_api_client.ApiException as e:
print("Exception when calling SmartFunctionsApi->ai_chat_stream: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
workspace_id | str | Workspace identifier | |
chat_request | ChatRequest |
[dict]
No authorization required
- Content-Type: application/json
- Accept: text/event-stream
Status code | Description | Response headers |
---|---|---|
200 | OK | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
SearchResult ai_search(workspace_id, search_request)
(BETA) Semantic Search in Metadata
(BETA) Uses similarity (e.g. cosine distance) search to find top X most similar metadata objects.
import time
import gooddata_api_client
from gooddata_api_client.api import smart_functions_api
from gooddata_api_client.model.search_result import SearchResult
from gooddata_api_client.model.search_request import SearchRequest
from pprint import pprint
# Defining the host is optional and defaults to http://localhost
# See configuration.py for a list of all supported configuration parameters.
configuration = gooddata_api_client.Configuration(
host = "http://localhost"
)
# Enter a context with an instance of the API client
with gooddata_api_client.ApiClient() as api_client:
# Create an instance of the API class
api_instance = smart_functions_api.SmartFunctionsApi(api_client)
workspace_id = "/6bUUGjjNSwg0_bs" # str | Workspace identifier
search_request = SearchRequest(
deep_search=False,
limit=10,
object_types=[
"attribute",
],
question="question_example",
relevant_score_threshold=0.3,
title_to_descriptor_ratio=0.7,
) # SearchRequest |
# example passing only required values which don't have defaults set
try:
# (BETA) Semantic Search in Metadata
api_response = api_instance.ai_search(workspace_id, search_request)
pprint(api_response)
except gooddata_api_client.ApiException as e:
print("Exception when calling SmartFunctionsApi->ai_search: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
workspace_id | str | Workspace identifier | |
search_request | SearchRequest |
No authorization required
- Content-Type: application/json
- Accept: application/json
Status code | Description | Response headers |
---|---|---|
200 | OK | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
SmartFunctionResponse anomaly_detection(workspace_id, result_id, anomaly_detection_request)
(EXPERIMENTAL) Smart functions - Anomaly Detection
(EXPERIMENTAL) Computes anomaly detection.
import time
import gooddata_api_client
from gooddata_api_client.api import smart_functions_api
from gooddata_api_client.model.anomaly_detection_request import AnomalyDetectionRequest
from gooddata_api_client.model.smart_function_response import SmartFunctionResponse
from pprint import pprint
# Defining the host is optional and defaults to http://localhost
# See configuration.py for a list of all supported configuration parameters.
configuration = gooddata_api_client.Configuration(
host = "http://localhost"
)
# Enter a context with an instance of the API client
with gooddata_api_client.ApiClient() as api_client:
# Create an instance of the API class
api_instance = smart_functions_api.SmartFunctionsApi(api_client)
workspace_id = "/6bUUGjjNSwg0_bs" # str | Workspace identifier
result_id = "9bd52018570364264fcf62d373da6bed313120e8" # str | Input result ID to be used in the computation
anomaly_detection_request = AnomalyDetectionRequest(
sensitivity=3.14,
) # AnomalyDetectionRequest |
skip_cache = False # bool | Ignore all caches during execution of current request. (optional) if omitted the server will use the default value of False
# example passing only required values which don't have defaults set
try:
# (EXPERIMENTAL) Smart functions - Anomaly Detection
api_response = api_instance.anomaly_detection(workspace_id, result_id, anomaly_detection_request)
pprint(api_response)
except gooddata_api_client.ApiException as e:
print("Exception when calling SmartFunctionsApi->anomaly_detection: %s\n" % e)
# example passing only required values which don't have defaults set
# and optional values
try:
# (EXPERIMENTAL) Smart functions - Anomaly Detection
api_response = api_instance.anomaly_detection(workspace_id, result_id, anomaly_detection_request, skip_cache=skip_cache)
pprint(api_response)
except gooddata_api_client.ApiException as e:
print("Exception when calling SmartFunctionsApi->anomaly_detection: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
workspace_id | str | Workspace identifier | |
result_id | str | Input result ID to be used in the computation | |
anomaly_detection_request | AnomalyDetectionRequest | ||
skip_cache | bool | Ignore all caches during execution of current request. | [optional] if omitted the server will use the default value of False |
No authorization required
- Content-Type: application/json
- Accept: application/json
Status code | Description | Response headers |
---|---|---|
200 | OK | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
AnomalyDetectionResult anomaly_detection_result(workspace_id, result_id)
(EXPERIMENTAL) Smart functions - Anomaly Detection Result
(EXPERIMENTAL) Gets anomalies.
import time
import gooddata_api_client
from gooddata_api_client.api import smart_functions_api
from gooddata_api_client.model.anomaly_detection_result import AnomalyDetectionResult
from pprint import pprint
# Defining the host is optional and defaults to http://localhost
# See configuration.py for a list of all supported configuration parameters.
configuration = gooddata_api_client.Configuration(
host = "http://localhost"
)
# Enter a context with an instance of the API client
with gooddata_api_client.ApiClient() as api_client:
# Create an instance of the API class
api_instance = smart_functions_api.SmartFunctionsApi(api_client)
workspace_id = "/6bUUGjjNSwg0_bs" # str | Workspace identifier
result_id = "a9b28f9dc55f37ea9f4a5fb0c76895923591e781" # str | Result ID
offset = 1 # int | (optional)
limit = 1 # int | (optional)
# example passing only required values which don't have defaults set
try:
# (EXPERIMENTAL) Smart functions - Anomaly Detection Result
api_response = api_instance.anomaly_detection_result(workspace_id, result_id)
pprint(api_response)
except gooddata_api_client.ApiException as e:
print("Exception when calling SmartFunctionsApi->anomaly_detection_result: %s\n" % e)
# example passing only required values which don't have defaults set
# and optional values
try:
# (EXPERIMENTAL) Smart functions - Anomaly Detection Result
api_response = api_instance.anomaly_detection_result(workspace_id, result_id, offset=offset, limit=limit)
pprint(api_response)
except gooddata_api_client.ApiException as e:
print("Exception when calling SmartFunctionsApi->anomaly_detection_result: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
workspace_id | str | Workspace identifier | |
result_id | str | Result ID | |
offset | int | [optional] | |
limit | int | [optional] |
No authorization required
- Content-Type: Not defined
- Accept: application/json
Status code | Description | Response headers |
---|---|---|
200 | OK | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
SmartFunctionResponse clustering(workspace_id, result_id, clustering_request)
(EXPERIMENTAL) Smart functions - Clustering
(EXPERIMENTAL) Computes clusters for data points from the provided execution result and parameters.
import time
import gooddata_api_client
from gooddata_api_client.api import smart_functions_api
from gooddata_api_client.model.clustering_request import ClusteringRequest
from gooddata_api_client.model.smart_function_response import SmartFunctionResponse
from pprint import pprint
# Defining the host is optional and defaults to http://localhost
# See configuration.py for a list of all supported configuration parameters.
configuration = gooddata_api_client.Configuration(
host = "http://localhost"
)
# Enter a context with an instance of the API client
with gooddata_api_client.ApiClient() as api_client:
# Create an instance of the API class
api_instance = smart_functions_api.SmartFunctionsApi(api_client)
workspace_id = "/6bUUGjjNSwg0_bs" # str | Workspace identifier
result_id = "9bd52018570364264fcf62d373da6bed313120e8" # str | Input result ID to be used in the computation
clustering_request = ClusteringRequest(
number_of_clusters=1,
threshold=0.03,
) # ClusteringRequest |
skip_cache = False # bool | Ignore all caches during execution of current request. (optional) if omitted the server will use the default value of False
# example passing only required values which don't have defaults set
try:
# (EXPERIMENTAL) Smart functions - Clustering
api_response = api_instance.clustering(workspace_id, result_id, clustering_request)
pprint(api_response)
except gooddata_api_client.ApiException as e:
print("Exception when calling SmartFunctionsApi->clustering: %s\n" % e)
# example passing only required values which don't have defaults set
# and optional values
try:
# (EXPERIMENTAL) Smart functions - Clustering
api_response = api_instance.clustering(workspace_id, result_id, clustering_request, skip_cache=skip_cache)
pprint(api_response)
except gooddata_api_client.ApiException as e:
print("Exception when calling SmartFunctionsApi->clustering: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
workspace_id | str | Workspace identifier | |
result_id | str | Input result ID to be used in the computation | |
clustering_request | ClusteringRequest | ||
skip_cache | bool | Ignore all caches during execution of current request. | [optional] if omitted the server will use the default value of False |
No authorization required
- Content-Type: application/json
- Accept: application/json
Status code | Description | Response headers |
---|---|---|
200 | OK | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
ClusteringResult clustering_result(workspace_id, result_id)
(EXPERIMENTAL) Smart functions - Clustering Result
(EXPERIMENTAL) Gets clustering result.
import time
import gooddata_api_client
from gooddata_api_client.api import smart_functions_api
from gooddata_api_client.model.clustering_result import ClusteringResult
from pprint import pprint
# Defining the host is optional and defaults to http://localhost
# See configuration.py for a list of all supported configuration parameters.
configuration = gooddata_api_client.Configuration(
host = "http://localhost"
)
# Enter a context with an instance of the API client
with gooddata_api_client.ApiClient() as api_client:
# Create an instance of the API class
api_instance = smart_functions_api.SmartFunctionsApi(api_client)
workspace_id = "/6bUUGjjNSwg0_bs" # str | Workspace identifier
result_id = "a9b28f9dc55f37ea9f4a5fb0c76895923591e781" # str | Result ID
offset = 1 # int | (optional)
limit = 1 # int | (optional)
# example passing only required values which don't have defaults set
try:
# (EXPERIMENTAL) Smart functions - Clustering Result
api_response = api_instance.clustering_result(workspace_id, result_id)
pprint(api_response)
except gooddata_api_client.ApiException as e:
print("Exception when calling SmartFunctionsApi->clustering_result: %s\n" % e)
# example passing only required values which don't have defaults set
# and optional values
try:
# (EXPERIMENTAL) Smart functions - Clustering Result
api_response = api_instance.clustering_result(workspace_id, result_id, offset=offset, limit=limit)
pprint(api_response)
except gooddata_api_client.ApiException as e:
print("Exception when calling SmartFunctionsApi->clustering_result: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
workspace_id | str | Workspace identifier | |
result_id | str | Result ID | |
offset | int | [optional] | |
limit | int | [optional] |
No authorization required
- Content-Type: Not defined
- Accept: application/json
Status code | Description | Response headers |
---|---|---|
200 | OK | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
SmartFunctionResponse forecast(workspace_id, result_id, forecast_request)
(BETA) Smart functions - Forecast
(BETA) Computes forecasted data points from the provided execution result and parameters.
import time
import gooddata_api_client
from gooddata_api_client.api import smart_functions_api
from gooddata_api_client.model.forecast_request import ForecastRequest
from gooddata_api_client.model.smart_function_response import SmartFunctionResponse
from pprint import pprint
# Defining the host is optional and defaults to http://localhost
# See configuration.py for a list of all supported configuration parameters.
configuration = gooddata_api_client.Configuration(
host = "http://localhost"
)
# Enter a context with an instance of the API client
with gooddata_api_client.ApiClient() as api_client:
# Create an instance of the API class
api_instance = smart_functions_api.SmartFunctionsApi(api_client)
workspace_id = "/6bUUGjjNSwg0_bs" # str | Workspace identifier
result_id = "9bd52018570364264fcf62d373da6bed313120e8" # str | Input result ID to be used in the computation
forecast_request = ForecastRequest(
confidence_level=0.95,
forecast_period=1,
seasonal=False,
) # ForecastRequest |
skip_cache = False # bool | Ignore all caches during execution of current request. (optional) if omitted the server will use the default value of False
# example passing only required values which don't have defaults set
try:
# (BETA) Smart functions - Forecast
api_response = api_instance.forecast(workspace_id, result_id, forecast_request)
pprint(api_response)
except gooddata_api_client.ApiException as e:
print("Exception when calling SmartFunctionsApi->forecast: %s\n" % e)
# example passing only required values which don't have defaults set
# and optional values
try:
# (BETA) Smart functions - Forecast
api_response = api_instance.forecast(workspace_id, result_id, forecast_request, skip_cache=skip_cache)
pprint(api_response)
except gooddata_api_client.ApiException as e:
print("Exception when calling SmartFunctionsApi->forecast: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
workspace_id | str | Workspace identifier | |
result_id | str | Input result ID to be used in the computation | |
forecast_request | ForecastRequest | ||
skip_cache | bool | Ignore all caches during execution of current request. | [optional] if omitted the server will use the default value of False |
No authorization required
- Content-Type: application/json
- Accept: application/json
Status code | Description | Response headers |
---|---|---|
200 | OK | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]
ForecastResult forecast_result(workspace_id, result_id)
(BETA) Smart functions - Forecast Result
(BETA) Gets forecast result.
import time
import gooddata_api_client
from gooddata_api_client.api import smart_functions_api
from gooddata_api_client.model.forecast_result import ForecastResult
from pprint import pprint
# Defining the host is optional and defaults to http://localhost
# See configuration.py for a list of all supported configuration parameters.
configuration = gooddata_api_client.Configuration(
host = "http://localhost"
)
# Enter a context with an instance of the API client
with gooddata_api_client.ApiClient() as api_client:
# Create an instance of the API class
api_instance = smart_functions_api.SmartFunctionsApi(api_client)
workspace_id = "/6bUUGjjNSwg0_bs" # str | Workspace identifier
result_id = "a9b28f9dc55f37ea9f4a5fb0c76895923591e781" # str | Result ID
offset = 1 # int | (optional)
limit = 1 # int | (optional)
# example passing only required values which don't have defaults set
try:
# (BETA) Smart functions - Forecast Result
api_response = api_instance.forecast_result(workspace_id, result_id)
pprint(api_response)
except gooddata_api_client.ApiException as e:
print("Exception when calling SmartFunctionsApi->forecast_result: %s\n" % e)
# example passing only required values which don't have defaults set
# and optional values
try:
# (BETA) Smart functions - Forecast Result
api_response = api_instance.forecast_result(workspace_id, result_id, offset=offset, limit=limit)
pprint(api_response)
except gooddata_api_client.ApiException as e:
print("Exception when calling SmartFunctionsApi->forecast_result: %s\n" % e)
Name | Type | Description | Notes |
---|---|---|---|
workspace_id | str | Workspace identifier | |
result_id | str | Result ID | |
offset | int | [optional] | |
limit | int | [optional] |
No authorization required
- Content-Type: Not defined
- Accept: application/json
Status code | Description | Response headers |
---|---|---|
200 | OK | - |
[Back to top] [Back to API list] [Back to Model list] [Back to README]