We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
1 parent f555b86 commit 746e2a6Copy full SHA for 746e2a6
FormalConjectures/ErdosProblems/912.lean
@@ -31,7 +31,7 @@ namespace Erdos912
31
32
noncomputable def h (n : ℕ) : ℕ := (n !).factorization.frange.card
33
34
-/-- Erdős and Selfridge prove in [Er82c] that `h =Θ[atTop] (fun n => (n / log n) ^ (1 / 2))`. -/
+/-- Erdős and Selfridge prove in [Er82c] that $h(n) \asymp \left(\frac{n}{\log n}\right)^{1/2}$. -/
35
@[category research solved, AMS 11]
36
theorem erdos_912_theta :
37
(fun n => (h n : ℝ)) =Θ[atTop] (fun n => (n / Real.log n) ^ (1 / 2 : ℝ)) := by
0 commit comments