diff --git a/FormalConjectures/OEIS/56777.lean b/FormalConjectures/OEIS/56777.lean new file mode 100644 index 000000000..d0936f852 --- /dev/null +++ b/FormalConjectures/OEIS/56777.lean @@ -0,0 +1,86 @@ +/- +Copyright 2026 The Formal Conjectures Authors. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + https://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +-/ +import FormalConjectures.Util.ProblemImports + +open scoped ArithmeticFunction +open Nat + +/-! +# Conjectures associated with A056777 + +A056777 lists composite numbers $n$ satisfying both $\varphi(n+12) = \varphi(n) + 12$ and +$\sigma(n+12) = \sigma(n) + 12$. + +The conjectures state identities connecting A056777 and prime quadruples (A007530), as +well as congruences satisfied by the members of A056777. + +*References:* [oeis.org/A056777](https://oeis.org/A056777) +-/ + +namespace OeisA056777 + +/-- A composite number $n$ is in the sequence A056777 if it satisfies both +$\varphi(n+12) = \varphi(n) + 12$ and $\sigma(n+12) = \sigma(n) + 12$. -/ +def a (n : ℕ) : Prop := + ¬n.Prime ∧ 1 < n ∧ totient (n + 12) = totient n + 12 ∧ σ 1 (n + 12) = σ 1 n + 12 + +/-- A number $n$ comes from a prime quadruple $(p, p+2, p+6, p+8)$ if +$n = p(p+8)$ for some prime $p$ where $p$, $p+2$, $p+6$, $p+8$ are all prime. -/ +def ComesFromPrimeQuadruple (n : ℕ) : Prop := + ∃ p : ℕ, p.Prime ∧ (p + 2).Prime ∧ (p + 6).Prime ∧ (p + 8).Prime ∧ n = p * (p + 8) + +/-- $65$ is in the sequence A056777. -/ +@[category test, AMS 11] +theorem a_65 : a 65 := by + refine ⟨?_, by norm_num, ?_, ?_⟩ + · simp only [show (65 : ℕ) = 5 * 13 by norm_num] + exact not_prime_mul (by norm_num) (by norm_num) + · decide + · decide + +/-- $209$ is in the sequence A056777. -/ +@[category test, AMS 11] +theorem a_209 : a 209 := by + set_option maxRecDepth 1000 in + refine ⟨?_, by norm_num, ?_, ?_⟩ + · simp only [show (209 : ℕ) = 11 * 19 by norm_num] + exact not_prime_mul (by norm_num) (by norm_num) + · decide + · decide + +/-- Numbers coming from prime quadruples are in the sequence A056777. -/ +@[category undergraduate, AMS 11] +theorem a_of_comesFromPrimeQuadruple {n : ℕ} (h : ComesFromPrimeQuadruple n) : a n := by + sorry + +/-- All members of the sequence A056777 come from prime quadruples. -/ +@[category research open, AMS 11] +theorem comesFromPrimeQuadruple_of_a {n : ℕ} (h : a n) : ComesFromPrimeQuadruple n := by + sorry + +/-- Numbers coming from prime quadruples satisfy $n \equiv 65 \pmod{72}$. -/ +@[category undergraduate, AMS 11] +theorem mod_72_of_comesFromPrimeQuadruple {n : ℕ} (h : ComesFromPrimeQuadruple n) : + n % 72 = 65 := by + sorry + +/-- Numbers coming from prime quadruples satisfy $n \equiv 9 \pmod{100}$. -/ +@[category undergraduate, AMS 11] +theorem mod_100_of_comesFromPrimeQuadruple {n : ℕ} (h : ComesFromPrimeQuadruple n) : + n % 100 = 9 := by + sorry + +end OeisA056777