diff --git a/FormalConjectures/GreensOpenProblems/2.lean b/FormalConjectures/GreensOpenProblems/2.lean new file mode 100644 index 000000000..5bba4590d --- /dev/null +++ b/FormalConjectures/GreensOpenProblems/2.lean @@ -0,0 +1,106 @@ +/- +Copyright 2026 The Formal Conjectures Authors. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + https://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +-/ + +import FormalConjectures.Util.ProblemImports + +/-! +# Ben Green's Open Problem 2 + +References: +- [Gr24] [Green, Ben. "100 open problems." (2024).](https://people.maths.ox.ac.uk/greenbj/papers/open-problems.pdf#problem.2) +- [Er65] P. Erdős. Extremal problems in number theory, In Proc. Sympos. Pure Math., Vol. VIII, + pages 181–189. Amer. Math. Soc., Providence, R.I., 1965. +- [Sa21] Sanders, Tom. "The Erdős–Moser Sum-free Set Problem." Canadian Journal of Mathematics 73.1 + (2021): 63-107. +- [Ru05] I. Z. Ruzsa, Sum-avoiding subsets. Ramanujan J., 9 (2005) (1-2):77–82. +- [Ch71] S. L. G. Choi. On a combinatorial problem in number theory. Proc. London Math. Soc. (3), + 23:629–642, 1971. doi:10.1112/plms/s3-23.4.629. +- [BSS00] A. Baltz, T. Schoen, and A. Srivastav. Probabilistic construction of small strongly + sum-free sets via large Sidon sets. Colloq. Math., 86(2):171–176, 2000. + doi:10.4064/cm-86-2-171-176. +-/ + +open Filter +open scoped Topology + +namespace Green2 + +/-- +The restricted sumset of a set $S$, denoted $S \hat{+} S$, is the set +$\lbrace s_1 + s_2 : s_1, s_2 \in S, s_1 \neq s_2 \rbrace$. +-/ +def restrictedSumset (S : Finset ℤ) : Finset ℤ := + S.offDiag.image (fun p => p.1 + p.2) + +/-- +We define the construction from [Sa21, p1] as +$M(A) := \max \{|S| : S \subseteq A \text{ and } (S \hat{+} S) \cap A = \varnothing \}$. +-/ +def maxRestrictedSumAvoidingSubsetSize (A : Finset ℤ) : ℕ := + (A.powerset.filter fun S => Disjoint (restrictedSumset S) A).sup Finset.card + +/-- +Let $A \subset \mathbf{Z}$ be a set of $n$ integers. Is there a set $S \subset A$ of size +$(\log n)^{100}$ such that the restricted sumset$S \hat{+} S$ is disjoint from $A$? +-/ +@[category research open, AMS 11] +theorem green_2 : answer(sorry) ↔ + ∀ᶠ n : ℕ in atTop, ∀ A : Finset ℤ, A.card = n → + (maxRestrictedSumAvoidingSubsetSize A : ℝ) ≥ (Real.log n) ^ 100 := by + sorry + +/-- +From [Sa21] it is known that there is always such an S with $|S| \gt (\log |A|)^{1+c}$. +-/ +@[category research solved, AMS 11] +theorem green_2_lower_bound_sanders : + ∃ c > (0 : ℝ), ∀ᶠ n : ℕ in atTop, ∀ A : Finset ℤ, A.card = n → + maxRestrictedSumAvoidingSubsetSize A ≥ Real.log n ^ (1 + c) := by + sorry + +/-- +From [Er65] it is known that $M(A) \le \frac{1}{3}|A| + O(1)$. +-/ +@[category research solved, AMS 11] +theorem green_2_upper_bound_erdos : + ∃ C : ℝ, ∀ A : Finset ℤ, + (maxRestrictedSumAvoidingSubsetSize A : ℝ) ≤ A.card / 3 + C := by + sorry + +/- +TODO(jeangud): Add additional bounds on non-negative integers from Selfridge [Er65, p187], and +Choi [Er65, p190], and [BSS00]. +-/ + +/-- +From [Ch71] it is known that $M(A) \le |A|^{2/5 + o(1)}$. +-/ +@[category research solved, AMS 11] +theorem green_2_upper_bound_choi : + ∃ (o : ℕ → ℝ) (_ : Tendsto o atTop (𝓝 0)), ∀ A : Finset ℤ, + (maxRestrictedSumAvoidingSubsetSize A : ℝ) ≤ A.card ^ (2 / 5 + o A.card) := by + sorry + +/-- +From [Ru05] the best-known upper bound is $|S| \lt e^{C \sqrt{\log |A|}}$. +-/ +@[category research solved, AMS 11] +theorem green_2_upper_bound_ruzsa : + ∃ C > (0 : ℝ), ∀ A : Finset ℤ, + (maxRestrictedSumAvoidingSubsetSize A : ℝ) < Real.exp (C * Real.sqrt (Real.log A.card)) := by + sorry + +end Green2