diff --git a/FormalConjectures/ErdosProblems/1139.lean b/FormalConjectures/ErdosProblems/1139.lean new file mode 100644 index 000000000..f121aed5d --- /dev/null +++ b/FormalConjectures/ErdosProblems/1139.lean @@ -0,0 +1,41 @@ +/- +Copyright 2026 The Formal Conjectures Authors. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + https://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +-/ + +import FormalConjectures.Util.ProblemImports +/-! +# Erdős Problem 1139 + +*Reference:* [erdosproblems.com/1139](https://www.erdosproblems.com/1139) +-/ + +open Nat Filter +open scoped ArithmeticFunction +open scoped Topology + +namespace Erdos1139 + +/-- +Let $1\leq u_1 < u_2 < \cdots$ be the sequence of integers with at most $2$ prime factors. +Is it true that \[\limsup_{k \to \infty} \frac{u_{k+1}-u_k}{\log k}=\infty?\] +-/ +@[category research open, AMS 11] +theorem erdos_1139 : + answer(sorry) ↔ + let u := Nat.nth (fun n ↦ 0 < n ∧ Ω n ≤ 2) + atTop.limsup (fun k : ℕ ↦ (((u (k + 1) : ℝ) - (u k : ℝ)) / Real.log ↑k : EReal)) = ⊤ := by + sorry + +end Erdos1139