diff --git a/FormalConjectures/OEIS/38552.lean b/FormalConjectures/OEIS/38552.lean new file mode 100644 index 000000000..5cc915599 --- /dev/null +++ b/FormalConjectures/OEIS/38552.lean @@ -0,0 +1,134 @@ +/- +Copyright 2026 The Formal Conjectures Authors. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + https://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +-/ +import FormalConjectures.Util.ProblemImports + +open Polynomial + +/-! +# Conjectures associated with A038552 + +A038552 lists the largest squarefree number $k$ such that the imaginary quadratic field +$\mathbb{Q}(\sqrt{-k})$ has class number $n$. + +The conjectures state that: +1. All terms are congruent to $19 \pmod{24}$. +2. This is also the largest absolute value of negative fundamental discriminant $d$ for + class number $n$. For even $n$, if $k$ is the largest odd number with $h(-k) = n$ and + $k'$ is the largest even number with $h(-k') = n$, then $k > k'$. + +*References:* [oeis.org/A038552](https://oeis.org/A038552) +-/ + +namespace OeisA38552 + +/-- The class number of the imaginary quadratic field $\mathbb{Q}(\sqrt{-k})$ equals $n$. -/ +def HasClassNumber (k n : ℕ) : Prop := + ∃ (h : Irreducible (X ^ 2 + C (k : ℚ))), + haveI := Fact.mk h + NumberField.classNumber (AdjoinRoot (X ^ 2 + C (k : ℚ))) = n + +/-- $k$ is the largest squarefree number such that $\mathbb{Q}(\sqrt{-k})$ has class number $n$. +This defines the $n$-th term of A038552. -/ +def a (n k : ℕ) : Prop := + Squarefree k ∧ HasClassNumber k n ∧ + ∀ m, Squarefree m → HasClassNumber m n → m ≤ k + +/-- An integer $d < 0$ is a negative fundamental discriminant if either: +- $d \equiv 1 \pmod 4$ and $d$ is squarefree, or +- $d = 4m$ where $m \equiv 2$ or $3 \pmod 4$ and $m$ is squarefree. -/ +def IsNegFundamentalDiscriminant (d : ℤ) : Prop := + d < 0 ∧ ((d % 4 = 1 ∧ Squarefree d) ∨ + (∃ m : ℤ, d = 4 * m ∧ (m % 4 = 2 ∨ m % 4 = 3) ∧ Squarefree m)) + +/-- The class number of the quadratic field with discriminant $d$. -/ +noncomputable def classNumberOfDiscriminant (d : ℤ) : ℕ := + haveI := Classical.dec (Irreducible (X ^ 2 - C (d : ℚ))) + if h : Irreducible (X ^ 2 - C (d : ℚ)) then + haveI := Fact.mk h + NumberField.classNumber (AdjoinRoot (X ^ 2 - C (d : ℚ))) + else 0 + +/-- $|d|$ is the largest absolute value among negative fundamental discriminants +with class number $n$. -/ +def IsLargestNegFundDiscForClassNumber {n : ℕ} (absD : ℕ) : Prop := + IsNegFundamentalDiscriminant (-(absD : ℤ)) ∧ + classNumberOfDiscriminant (-(absD : ℤ)) = n ∧ + ∀ d : ℤ, IsNegFundamentalDiscriminant d → classNumberOfDiscriminant d = n → d.natAbs ≤ absD + +/-- The Stark-Heegner theorem implies that the squarefree $k > 0$ such that +$\mathbb{Q}(\sqrt{-k})$ has class number $1$ are exactly $\{1, 2, 3, 7, 11, 19, 43, 67, 163\}$. -/ +@[category research solved, AMS 11] +theorem starkHeegner_classNumberOne : + {k : ℕ | Squarefree k ∧ HasClassNumber k 1} = {1, 2, 3, 7, 11, 19, 43, 67, 163} := by + sorry + +/-- $163$ is squarefree. -/ +@[category test, AMS 11] +theorem squarefree_163 : Squarefree (163 : ℕ) := + (Nat.prime_iff.mp (by norm_num : Nat.Prime 163)).squarefree + +/-- $\mathbb{Q}(\sqrt{-163})$ has class number $1$. -/ +@[category API, AMS 11] +theorem hasClassNumber_163_1 : HasClassNumber 163 1 := by + have h := starkHeegner_classNumberOne + simp only [Set.ext_iff, Set.mem_setOf_eq, Set.mem_insert_iff, Set.mem_singleton_iff] at h + exact ((h 163).mpr (by right; right; right; right; right; right; right; right; rfl)).2 + +/-- $163$ is the largest squarefree $k$ with class number $1$. -/ +@[category test, AMS 11] +theorem a_1_163 : a 1 163 := by + refine ⟨squarefree_163, hasClassNumber_163_1, ?_⟩ + intro m hm_sq hm_class + have h := starkHeegner_classNumberOne + simp only [Set.ext_iff, Set.mem_setOf_eq, Set.mem_insert_iff, Set.mem_singleton_iff] at h + have hm_in : m ∈ ({1, 2, 3, 7, 11, 19, 43, 67, 163} : Set ℕ) := (h m).mp ⟨hm_sq, hm_class⟩ + simp only [Set.mem_insert_iff, Set.mem_singleton_iff] at hm_in + rcases hm_in with rfl | rfl | rfl | rfl | rfl | rfl | rfl | rfl | rfl <;> norm_num + +/-! +The values for other class numbers in A038552 come from the papers +* Duncan A. Buell, Small class numbers and extreme values of L-functions of quadratic fields, +Math. Comp., 31 (1977), 786-796. +* M. Watkins, Class numbers of imaginary quadratic fields, Mathematics of Computation 73 (2004), +pp. 907-938. +-/ + +/-- All terms of A038552 are congruent to $19 \pmod{24}$. -/ +@[category research open, AMS 11] +theorem mod_24_of_a {n k : ℕ} (h : a n k) : k % 24 = 19 := by + sorry + +/-- A038552 also gives the largest absolute value of negative fundamental discriminant +for each class number. -/ +@[category research open, AMS 11] +theorem a_eq_largestNegFundDisc {n k : ℕ} (h : a n k) : + IsLargestNegFundDiscForClassNumber (n := n) k := by + sorry + +/-- For even class number $n$, if $k$ is the largest odd squarefree number with +$h(-k) = n$ and $k'$ is the largest even squarefree number with $h(-k') = n$, +then $k > k'$. -/ +@[category research open, AMS 11] +theorem odd_gt_even_for_even_classNumber {n : ℕ} (hn : Even n) (k k' : ℕ) + (hk_odd : Odd k) (hk'_even : Even k') + (hk_sq : Squarefree k) (hk'_sq : Squarefree k') + (hk_class : HasClassNumber k n) (hk'_class : HasClassNumber k' n) + (hk_largest : ∀ m, Odd m → Squarefree m → HasClassNumber m n → m ≤ k) + (hk'_largest : ∀ m, Even m → Squarefree m → HasClassNumber m n → m ≤ k') : + k > k' := by + sorry + +end OeisA38552